已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長,求原點O到直線l的距離的最大值;
(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知圓M: ,直線,上一點A的橫坐標為,過點A作圓M的兩條切線,,切點分別為B,C.
(1)當時,求直線,的方程;
(2)當直線,互相垂直時,求的值;
(3)是否存在點A,使得?若存在,求出點A的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,圓與坐標軸交于點.
⑴求與直線垂直的圓的切線方程;
⑵設點是圓上任意一點(不在坐標軸上),直線交軸于點,直線交直線于點,
①若點坐標為,求弦的長;②求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點?若存在,求圓的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,△ABO三邊上的點C、D、E都在⊙O上,已知AB∥DE,AC=CB.
(1)求證:直線AB是⊙O的切線;
(2)若AD=2,且tan∠ACD=,求⊙O的半徑r的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.
(1)求實數(shù)b的取值范圍;
(2)求圓C的方程;
(3)圓C是否經(jīng)過定點(與b的取值無關)?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com