14.已知橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1(m,n$為常數(shù),m>n>0)的左、右焦點分別為F1,F(xiàn)2,P是以橢圓短軸為直徑的圓上任意一點,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=2n-m.

分析 由題意畫出圖形,再由數(shù)量積的坐標(biāo)運算可得答案.

解答 解:如圖,F(xiàn)1(-c,0),F(xiàn)2(c,0),

設(shè)P(x0,y0),則${{x}_{0}}^{2}+{{y}_{0}}^{2}=^{2}$,
∴$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(x0+c,y0)•(x0-c,y0)=${{x}_{0}}^{2}+{{y}_{0}}^{2}-{c}^{2}$=b2-c2=2b2-a2=2n-m.
故答案為:2n-m.

點評 本題考查橢圓的簡單性質(zhì),考查了平面向量在圓錐曲線問題中的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin x+cos x,f′(x)是f(x)的導(dǎo)函數(shù).
(I)求函數(shù)g(x)=f(x)f′(x)-f2(x)的最大值和最小正周期;
(Ⅱ)若f(x)=2f′(x),求$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線l:x+y+a=0與圓C:x2+y2=3截得的弦長為$\sqrt{3}$,則a=( 。
A.$±\frac{3}{2}$B.$±3\sqrt{2}$C.±3D.$±\frac{3}{2}\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x|x<1},B={x|x>3},則∁R(A∪B)={x|1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)z=(1-2i)(3+i),其中i為虛數(shù)單位,則|z|是5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯誤的是( 。
A.命題“若lgx=0,則x=0”的逆否命題為“若x≠0,則lgx≠0”
B.若p∧q為假命題,則p,q均為假命題
C.命題p:?x0∈R,使得sinx0>1,則¬p“?x∈R,均有sinx≤1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$\frac{1}$<$\frac{1}{a}$<0,則下列結(jié)論不正確的是( 。
A.a2<b2B.ab>b2C.a+b<0D.|a|+|b|>a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,M是BC的中點,且BM1⊥BC,平面B1C1CB⊥平面ABC.BC=CA=AA1
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(1)證明平面ABEF⊥平面EFDC;
(2)證明:CD∥EF
(3)求二面角E-BC-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案