精英家教網 > 高中數學 > 題目詳情

(.(本小題滿分12分)
如圖,四棱錐S-ABCD的底面是矩形,ABa,AD2,SA1,且SA⊥底面ABCD,若

邊BC上存在異于B,C的一點P,使得
(1)求a的最大值;
(2)當a取最大值時,求平面SCD的一個單位法向量
及點P到平面SCD的距離.


解:建立如圖所示的空間直角坐標系,則各點坐標分別為:
A(0,0,0),B(a,0,0),C(a,2,0),D(0,2,0),S(0,0,1),設P(a,x,0) (0<x<2)
(1) ∵………2分
∴由得: ×=0,
即:     ………4分
∴當且僅當x=1時,a有最大值為1.
此時P為BC中點.               ………6分
(2) 設是平面SCD的一個法向量, 由(1)知:

∴由
∴平面SCD的一個單位法向量
方向上的投影為
∴點P到平面SCD的距離為.                          ………12分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知關于的一元二次函數  (Ⅰ)設集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為,求函數在區(qū)間[上是增函數的概率;(Ⅱ)設點(,)是區(qū)域內的隨機點,求函數上是增函數的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線段上且=.

(I)證明:平面⊥平面;

(II)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案