【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎者先從裝有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設一、二、三等獎如下:
獎級 | 摸出紅、藍球個數(shù) | 獲獎金額 |
一等獎 | 3紅1藍 | 200元 |
二等獎 | 3紅0藍 | 50元 |
三等獎 | 2紅1藍 | 10元 |
其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求一次摸獎恰好摸到1個紅球的概率;
(2)求摸獎者在一次摸獎中獲獎金額X的分布列.
【答案】(1);(2)見解析.
【解析】試題分析:
(1)利用超幾何分布的公式可得一次摸獎恰好摸到1個紅球的概率是;
(2)由題意可知X的所有可能值為:0,10,50,200,結(jié)合題意求解概率值即可求得X的分布列.
試題解析:
設Ai表示摸到i個紅球,Bj表示摸到j個藍球,則Ai(i=0,1,2,3)與Bj(j=0,1)獨立.
(1)恰好摸到1個紅球的概率為P(A1)==.
(2)X的所有可能值為:0,10,50,200,且
P(X=200)=P(A3B1)=P(A3)P(B1)=·=,
P(X=50)=P(A3B0)=P(A3)P(B0)=·=,
P(X=10)=P(A2B1)=P(A2)P(B1)=·==,
P(X=0)=1---=.
綜上知X的分布列為
X | 0 | 10 | 50 | 200 |
P |
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(Ⅰ)證明:函數(shù)具有性質(zhì),并求出對應的的值;
(Ⅱ)試分別探究形如①()、②(且)、③(且)的函數(shù),是否一定具有性質(zhì)?并加以證明.
(Ⅲ)已知函數(shù)具有性質(zhì),求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】編號為A,B,C,D,E的5個小球放在如圖所示的5個盒子里,要求每個盒子只能放1個小球,且A球不能放在1,2號盒子里,B球必須放在與A球相鄰的盒子中,求不同的放法有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某校新、老校區(qū)之間開車單程所需時間為, 只與道路暢通狀況有關(guān),對其容量為的樣本進行統(tǒng)計,結(jié)果如圖:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學期望;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關(guān)于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;
(2)當時,若點平分線段,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形和均為平行四邊形,點在平面內(nèi)的射影恰好為點,以為直徑的圓經(jīng)過點, , 的中點為, 的中點為,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com