【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.
【答案】解:(Ⅰ)不等式轉(zhuǎn)化為 或 ,
解得x>2,∴x0=2;
(Ⅱ)由題意,等價(jià)于|x﹣m|+|x+ |=2(m>0)有解,
∵|x﹣m|+|x+ |≥m+ ,當(dāng)且僅當(dāng)(x﹣m)(x+ )≤0時(shí)取等號(hào),
∵|x﹣m|+|x+ |=2(m>0)有解,
∴m+ ≤2,
∵m+ ≥2,
∴m+ =2,∴m=1
【解析】(Ⅰ)不等式轉(zhuǎn)化為 或 ,解得x>2,即可求x0的值;(Ⅱ)由題意,等價(jià)于|x﹣m|+|x+ |=2(m>0)有解,結(jié)合基本不等式,即可求實(shí)數(shù)m的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲,乙兩輛車去同一貨場(chǎng)裝貨物,貨場(chǎng)每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為30分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場(chǎng),則至少有一輛車需要等待裝貨物的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時(shí),不等式f(x)≤ex恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A(﹣1,0),B(1,0),若△ABC的重心G和垂心H滿足GH平行于x軸(G.H不重合),
(I)求動(dòng)點(diǎn)C的軌跡Γ的方程;
(II)已知O為坐標(biāo)原點(diǎn),若直線AC與以O(shè)為圓心,以|OH|為半徑的圓相切,求此時(shí)直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an+1=λSn+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3成等差數(shù)列.
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)設(shè)bn=2an﹣1,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)單調(diào)遞減的函數(shù)是( )
A.y=﹣x3
B.y=ln|x|
C.y=cosx
D.y=2﹣|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),則ab﹣a﹣b的取值范圍為( )
A.(﹣2,3)
B.(﹣2,2)
C.(1,2)
D.(﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了回饋顧客,某商場(chǎng)在元旦期間舉行購(gòu)物抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得3分;方案乙的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得2分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,抽獎(jiǎng)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≥3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出為了累計(jì)得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com