【題目】如圖,一個(gè)幾何體三視圖的正視圖和側(cè)視圖為邊長(zhǎng)為2銳角60°的菱形,俯視圖為正方形,則此幾何體的內(nèi)切球表面積為( )
A.8π
B.4π
C.3π
D.2π
【答案】C
【解析】解:由于此幾何體三視圖的正視圖和側(cè)視圖為邊長(zhǎng)為2銳角60°的菱形,俯視圖為正方形,
則該幾何體的內(nèi)切球的球心即為該幾何體的中心,即是正方形的中心.
由此幾何體三視圖可知,幾何體每個(gè)面的三邊長(zhǎng)分別為 ,
設(shè)此幾何體的內(nèi)切球的半徑為r,則由體積相等得到: =
解得r= ,則此幾何體的內(nèi)切球表面積為
所以答案是 C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解由三視圖求面積、體積的相關(guān)知識(shí),掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如圖所示的頻率分布直方圖.
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.
①利用該正態(tài)分布,求P(187.8<Z<212.2);
②某用戶從該企業(yè)購(gòu)買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)上的產(chǎn)品件數(shù),利用①的結(jié)果,求E(X).
附:≈12.2.
若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(I)已知函數(shù)f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數(shù),且0<r<1.求f(x)的最小值;
(II)試用(I)的結(jié)果證明如下命題:設(shè)a1≥0,a2≥0,b1 , b2為正有理數(shù),若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(III)請(qǐng)將(II)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.注:當(dāng)α為正有理數(shù)時(shí),有求導(dǎo)公式(xα)r=αxα﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖像如圖所示.
則下列說(shuō)法中正確的是____(填序號(hào)).
①函數(shù)y=f(x)在區(qū)間上單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間上單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)上單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x=-時(shí),函數(shù)y=f(x)有極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD是圓的兩條平行弦,BE∥AC,BE交CD于E、交圓于F,過(guò)A點(diǎn)的切線交DC的延長(zhǎng)線于P,PC=ED=1,PA=2.
(1)求AC的長(zhǎng);
(2)試比較BE與EF的長(zhǎng)度關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1≠0,2an﹣a1=S1Sn , n∈N* .
(1)求a1a2 , 并求數(shù)列{an}的通項(xiàng)公式,
(2)求數(shù)列{nan}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是⊙O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與⊙O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長(zhǎng)線交⊙O于點(diǎn)E,證明:
(1)BE=EC;
(2)ADDE=2PB2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x0,3)與點(diǎn)Q(x0,4)分別在橢圓=1與拋物線y2=2px(p>0)上.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是拋物線上的兩點(diǎn),∠AQB的角平分線與x軸垂直,求直線AB在y軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率是,一個(gè)頂點(diǎn)是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),是橢圓上異于點(diǎn)的任意兩點(diǎn),且.試問(wèn):直線是否恒過(guò)一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com