【題目】已知
(1)求函數(shù)的解析式及其定義域;
(2)若對(duì)恒成立,求的取值范圍.
【答案】(1)f(x)=2x-2-x;定義域?yàn)?/span>(2)(-∞,-1]
【解析】
(1)利用換元法,求得函數(shù)的解析式,并求得定義域.
(2)利用換元法,將原不等式分離常數(shù)得到在恒成立,利用二次函數(shù)對(duì)稱軸,求得在上的最小值,進(jìn)而求得的取值范圍.
(1)設(shè)log2x=t,t∈R
可得x=2t
∴f(t)=,
即f(x)=2x-2-x,定義域?yàn)?/span>.
(2)由8x-8-x-4x+1-41-x+8≥kf(x)對(duì)x∈[1,+∞)恒成立,
即8x-8-x-4x+1-41-x+8≥k(2x-2-x)對(duì)x∈[1,+∞)恒成立,
可得(2x)3-(2-x)3-4[(2x)2+(2-x)2]+8≥k(2x-2-x)
則(2x-2-x)[(2x)2+(2-x)2+1]-4[(2x)2+(2-x)2]+8≥k(2x-2-x)
∴(2x-2-x)[(2x-2-x)2+3]-4[(2x-2-x)2+2]+8≥k(2x-2-x)
∴(2x-2-x)[(2x-2-x)2+3]-4(2x-2-x)2≥k(2x-2-x)
設(shè)2x-2-x=t,
可得t(t2+3)-4t2≥kt,(t∈R)
∵x∈[1,+∞)恒成立,
∴t≥
則t2+3-4t≥k在t∈[,+∞)恒成立,
當(dāng)t=2時(shí),(t2+3-4t)min=-1
∴k≤-1;
故得k的取值范圍是(-∞,-1];
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成,兩組.年年初,公司根據(jù)銷售員的銷售業(yè)績(jī)分發(fā)年終獎(jiǎng),銷售員的銷售額(單位:十萬元)在區(qū)間,,,內(nèi)對(duì)應(yīng)的年終獎(jiǎng)分別為2萬元,2.5萬元,3萬元,3.5萬元.已知銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組:,,,,得到如下兩個(gè)頻率分布直方圖:
以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機(jī)選取1位,記,分別表示組與組被選取的銷售員獲得的年終獎(jiǎng).
(1)求的分布列及數(shù)學(xué)期望;
(2)試問組與組哪個(gè)組銷售員獲得的年終獎(jiǎng)的平均值更高?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體外接球的表面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市關(guān)系要好的四個(gè)家庭各有兩個(gè)小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4人,(乘同一輛車的4名小孩不考慮位置差異).
(1)共有多少種不同的乘坐方式?
(2)若戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個(gè)家庭的乘坐方式共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品和.這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):
產(chǎn)品
產(chǎn)品(其中)
(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于,求的取值范圍;
(Ⅱ)丙要將家中閑置的10萬元錢進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )
A. 16 B. 8 C. 4 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解一家企業(yè)生產(chǎn)的某類產(chǎn)品的使用壽命(單位:小時(shí)),現(xiàn)從中隨機(jī)抽取一定數(shù)量的產(chǎn)品進(jìn)行測(cè)試,繪制頻率分布直方圖如圖所示.
(1)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,估算這批產(chǎn)品的平均使用壽命;
(2)已知該企業(yè)生產(chǎn)的這類產(chǎn)品有甲、乙兩個(gè)系列,產(chǎn)品使用壽命不低于60小時(shí)為合格,合格產(chǎn)品中不低于90小時(shí)為優(yōu)異,其余為一般.現(xiàn)從合格產(chǎn)品中,用分層抽樣的方法抽取70件,其中甲系列有35件(1件優(yōu)異).請(qǐng)完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為產(chǎn)品優(yōu)異與系列有關(guān)?
甲系列 | 乙系列 | 合計(jì) | |
優(yōu)異 | |||
一般 | |||
合計(jì) |
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公交車的數(shù)量太多容易造成資源浪費(fèi),太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機(jī)調(diào)查了50名乘客,經(jīng)整理,他們候車時(shí)間(單位:)的莖葉圖如下:
(Ⅰ)將候車時(shí)間分為八組,作出相應(yīng)的頻率分布直方圖;
(Ⅱ)若公交公司將2路車發(fā)車時(shí)間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點(diǎn)將發(fā)生變化(例如候車時(shí)間為9的不變,候車時(shí)間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設(shè)其中候車時(shí)間不超過10的乘客人數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com