求兩焦點的坐標(biāo)分別為(-2,0),(2,0),且經(jīng)過點P(2,)的橢圓方程.
橢圓方程是
由題意可知,c=2,設(shè)橢圓方程為,則  ①
又點P(2,)在橢圓上,所以  、冢
聯(lián)立①②解得,(舍去), 故所求橢圓方程是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在橢圓中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,B、D分別
為橢圓的左、右頂點,A為橢圓在第一象限內(nèi)的一點,直線AF1交橢圓于另
一點C,交y軸于點E,且點F1、F2三等分線段BD.
(1)求的值;
(2)若四邊形EBCF2為平行四邊形,求點C的坐標(biāo);
(3)當(dāng)時,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距是2,則m的值為                              (    )
A.6B.9C.6或4D.9或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角三角形的直角頂點為動點,,為兩個定點,作,動點滿足,當(dāng)點運動時,設(shè)點的軌跡為曲線,曲線軸正半軸的交點為
(Ⅰ) 求曲線的方程;
(Ⅱ) 是否存在方向向量為m的直線,與曲線交于,兩點,且 與的夾角為?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知圓,定點A(3,0),M為圓C上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)求過點Q(2,1)的弦的中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點,且線段AB的中點,在直線上.(1)求此橢圓的離心率;(2)若橢圓的右焦點關(guān)于直線的對稱點的在圓上,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,中心在原點O的橢圓的右焦點為F(3,0),
右準(zhǔn)線l的方程為:x = 12。
(1)求橢圓的方程;(4分)
(2)在橢圓上任取三個不同點,使,
證明: 為定值,并求此定值。(8分)


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線的右焦點F,且交橢圓CA,B兩點,點A,F,B在直線上的射影依次為點D,KE.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)對于(1)中的橢圓C,若直線Ly軸于點M,且,當(dāng)m變化時,求的值;
(3)連接AEBD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

化簡方程+=10為不含根式的形式是(    )
A.+="1"B.+=1
C.+="1"D.+=1

查看答案和解析>>

同步練習(xí)冊答案