16.直角△ABC中,C=$\frac{π}{2}$,AC=2.若D為AC中點(diǎn),且sin∠CBD=$\frac{1}{3}$,則BC=$2\sqrt{2}$,tanA=$\sqrt{2}$.

分析 由題意畫出圖象,由D為AC中點(diǎn)求出CD,在RT△BCD中,由題意和正弦函數(shù)求出BD,由勾股定理求出BC,在RT△BCD中,由正切函數(shù)求出tanA的值

解答 解由題意畫出圖象:
∵AC=2,且D為AC中點(diǎn),
∴CD=1,
在RT△BCD中,
∵sin∠CBD=$\frac{1}{3}$,
∴$\frac{CD}{BD}=\frac{1}{3}$,得BD=3,
則BC=$\sqrt{B{D}^{2}-C{D}^{2}}$=$2\sqrt{2}$,
在RT△BCD中,tanA=$\frac{BC}{AC}$=$\frac{2\sqrt{2}}{2}$=$\sqrt{2}$,
故答案為:$2\sqrt{2}$;$\sqrt{2}$.

點(diǎn)評 本題考查直角三角形中三角函數(shù)的定義,以及勾股定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.將一個(gè)骰子先后拋擲兩次,觀察向上的點(diǎn)數(shù).
(1)列出兩數(shù)都為奇數(shù)的所有可能情況,并求兩數(shù)都為奇數(shù)的概率;
(2)以第一次向上的點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y,列出“x>y”的所有可能情況,并求事件“x>y”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sinα是方程5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(3π+α)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的頂點(diǎn)A(1,3),B(-1,-1),C(2,1),求△ABC的邊BC上的高AD的斜率和垂足D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列命題:
①存在實(shí)數(shù)α,使sinα•cosα=$\frac{1}{3}$;
②函數(shù)y=sin4x-cos4x的最小正周期是π;
③設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,若存在實(shí)數(shù)λ,使$\overrightarrow b$=λ$\overrightarrow a$,則|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|;
④若sin(2x1-$\frac{π}{4}$)=sin(2x2-$\frac{π}{4}$),則x1-x2=kπ,其中k∈Z;
⑤若α、β是第一象限的角,且α>β,則sinα>sinβ.
其中正確命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:“函數(shù)f(x)=${2^{{x^2}-2x}}$-m在R上有零點(diǎn)”. 命題q:“函數(shù)f(x)=x2+2mx+n在[1,2]上單調(diào)遞增”.
(1)若p為真命題,則實(shí)數(shù)m的取值范圍;
(2)若p∧q為真命題,則實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某算法的程序框圖如圖所示,則執(zhí)行該算法后輸出的結(jié)果為( 。
A.$\frac{39}{40}$B.$\frac{49}{50}$C.$\frac{50}{49}$D.$\frac{60}{59}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC的面積為$\frac{{4\sqrt{3}}}{3}$,AC=3,B=60°,則△ABC的周長為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={y|y=x2-1},B={x|y=$\sqrt{x-1}$},則A∩B為( 。
A.B.[1,+∞)C.[-1,+∞)D.[-1,1]

查看答案和解析>>

同步練習(xí)冊答案