7.已知y=f(x+1)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[1,2)時(shí),f(x)=log2x,設(shè)a=f($\frac{1}{2}$),$b=f(\frac{10}{3})$,c=f(1),則a,b,c的大小關(guān)系為( 。
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

分析 由題意可得函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x)=log2x 在[1,2)上單調(diào)遞增,再根據(jù) a=f($\frac{1}{2}$)=f($\frac{3}{2}$),$b=f(\frac{10}{3})$=f($\frac{4}{3}$),c=f(1),從而得到a、b、c的大小關(guān)系.

解答 解:∵y=f(x+1)是定義在R上的周期為2的偶函數(shù),∴f(1+x)=f(1-x),即函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱.
∴f(x)=f(2-x),故f(x)也是周期等于2的函數(shù),
∵當(dāng)x∈[1,2)時(shí),f(x)=log2x,∴a=f($\frac{1}{2}$)=f(2-$\frac{1}{2}$)=f($\frac{3}{2}$),$b=f(\frac{10}{3})$=f($\frac{4}{3}$),c=f(1),
再根據(jù)f(x)=log2x在[1,2)上單調(diào)遞增,可得a>b>c,
故選:D.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意反函數(shù)性質(zhì)的靈活運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在二項(xiàng)式($\frac{1}{{\sqrt{x}}}$-x24展開式中含x3項(xiàng)的系數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5(\frac{1}{2})^{2x},-1≤x<1}\\{1+\frac{4}{{x}^{2}},x≥1}\end{array}\right.$設(shè)m>n≥-1,且f(m)=f(n),則m•f($\sqrt{2}$m)的最小值為(  )
A.4B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l1的方程為3x+4y-12=0,
(1)求l2的方程,使得:①l2與l1平行,且過點(diǎn)(-1,3);
②l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4;
(2)直線l1與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))內(nèi)切圓及外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sinx的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$f(x)=\sqrt{3}sin(\frac{1}{4}x)cos(\frac{1}{4}x)+{cos^2}(\frac{1}{4}x)-\frac{1}{2}$的圖象向左平移φ(0<φ<π)個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{ω}$(ω>0)倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,已知函數(shù)y=g(x)是周期為π的偶函數(shù),則ω,φ的值分別為( 。
A.4,$\frac{π}{3}$B.4,$\frac{2π}{3}$C.2,$\frac{π}{3}$D.2,$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=3,S6=36,則a4=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知ab<0,則$\frac{a}$+$\frac{a}$的取值范圍是( 。
A.(-∞,-2)B.(-∞,-2]C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{xn}滿足:x1=$\frac{1}{3}$,xn+1=x${\;}_{n}^{2}$+xn,則下述和數(shù)$\frac{1}{{1+{x_1}}}+\frac{1}{{1+{x_2}}}+\frac{1}{{1+{x_3}}}+…\frac{1}{{1+{x_{2016}}}}$的整數(shù)部分的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案