設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過(guò)B1作直線l交橢圓于P、Q兩點(diǎn).
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若,求直線l的方程;
(3) 設(shè)直線l與圓O:x2+y2=8相交于M、N兩點(diǎn),令|MN|的長(zhǎng)度為t,若t∈,求△B2PQ的面積的取值范圍.
解:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,右焦點(diǎn)為.
因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90º,得c=2b…………1分
在Rt△AB1B2中,,從而.………………3分
因此所求橢圓的標(biāo)準(zhǔn)方程為: …………………………………………4分
(2)由(1)知,由題意知直線的傾斜角不為0,故可設(shè)直線的方程為:,代入橢圓方程得,…………………………6分
設(shè)P(x1, y1)、Q(x2, y2),則y1、y2是上面方程的兩根,因此,
,又,所以
………………………………8分
由,得=0,即,解得;
所以滿足條件的直線有兩條,其方程分別為:x+2y+2=0和x–2y+2=0……………………10分
(3) 當(dāng)斜率不存在時(shí),直線,此時(shí),………………11分
當(dāng)斜率存在時(shí),設(shè)直線,則圓心到直線的距離,
因此t=,得………………………………………13分
聯(lián)立方程組:得,由韋達(dá)定理知,
,所以,
因此.
設(shè),所以,所以…15分
綜上所述:△B2PQ的面積……………………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省高三高考?jí)狠S理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1作直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南安陽(yáng)一中高二第一次階段測(cè)試數(shù)學(xué)試卷(奧數(shù)班)(解析版) 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且△ 是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)做直線交橢圓于P,Q兩點(diǎn),使,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com