已知橢圓的兩個(gè)焦點(diǎn)F1(-2
2
,0),F(xiàn)2(2
2
,0),過(guò)點(diǎn)F1的直線l與橢圓交于M、N兩點(diǎn),若△NMF2的周長(zhǎng)為12,求S△MNF2的最大值.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意知c=2
2
,4a=12,由此能得到橢圓的方程.設(shè)直線l的傾斜角為θ,當(dāng)θ≠
π
2
時(shí),求出△MNF2的面積,當(dāng)θ=
π
2
時(shí),求出△MNF2的面積,比較得出△MNF2面積的最大值.
解答: 解:由題意知c=2
2
,4a=12,∴a=3,b=1
∴橢圓的方程為
x2
9
+y2=1,
如圖示:

設(shè)直線l的傾斜角為θ,當(dāng)θ≠
π
2
時(shí),不妨設(shè)θ∈(0,
π
2
);
∴l(xiāng)的方程是y=tanθ(x+2
2
),
y=tanθ(x+2
2
)
x2
9
+y2=1
,
消去x得:(
1+9tan2θ
tan2θ
)
y2-
4
2
tanθ
y-1=0,
∴y1+y2=
4
2
tanθ
1+9tan2θ
,y1 y2=-
tan2θ
1+9tan2θ
,
∴|y1-y2|
=
(y1+y2)2-4y1y2

=
36tan2θ(1+tan2θ)
(1+9tan2θ)2

=
6tanθ•
1
cosθ
1+9tan2θ

=
6
1
sinθ
+8sinθ

6
2
1
sinθ
•8sinθ

=
3
2
4
,
∴S△MNF2=
1
2
•2c•|y1-y2|=3,
當(dāng)θ=
π
2
時(shí),|MN|=
2
3
,S△MNF2=
1
2
•2c•|y1-y2|=
4
2
3
,
綜上,△MNF2的最大值是3.
點(diǎn)評(píng):本題考查了橢圓的定義,計(jì)算三角形面積的應(yīng)用問(wèn)題,基本不等式的運(yùn)用問(wèn)題等綜上,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)方程x2+bx+c=0的系數(shù)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù).
(Ⅰ)求方程x2+bx+c=0有兩個(gè)不等實(shí)根的概率;
(Ⅱ)求方程x2+bx+c=0沒(méi)有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
b
滿足|
a
|=1,|
b
|=2,且
a
b
的夾角為
π
3
,則
a
•(
a
+
b
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)代城市大多是棋盤(pán)式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖1).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點(diǎn)間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.

(1)已知A(-3,-3),B(3,2),求A、B兩點(diǎn)的距離D(AB)
(2)求到定點(diǎn)M(1,2)的“直角距離”為2的點(diǎn)的軌跡方程.并寫(xiě)出所有滿足條件的“格點(diǎn)”的坐標(biāo)(格點(diǎn)是指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
(3)求到兩定點(diǎn)F1、F2的“直角距離”和為定值2a(a>0)的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系如圖2內(nèi)作出該動(dòng)點(diǎn)的軌跡.
①F1(-1,0),F(xiàn)2(1,0),a=2;
②F1(-1,-1),F(xiàn)2(1,1),a=2;
③F1(-1,-1),F(xiàn)2(1,1),a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x1+x13=3,x2+
3x2
=3,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2,g(x)=-
1
2
x+5,設(shè)F(x)=f(g-1(x))-g-1(f(x)),則F(x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b,c∈(0,+∞),證明:
1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若10件產(chǎn)品中包含2件廢品,今在其中任取兩件,求:
(1)取出的兩件中至少有一件是廢品的概率;
(2)已知取出的兩件中有一件是廢品的條件下,另一件也是廢品的概率;
(3)已知兩件中有一件不是廢品的條件下,另一件是廢品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a
2
x2+(a+b)x+c(a,b,c∈R)的兩個(gè)極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),z=2a-b,則z的取值范圍是(  )
A、(-∞,3]
B、(-∞,-3)
C、[-3,+∞)
D、(-3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案