5.函數(shù)f(x)=$\frac{1}{x}$上的點(diǎn)到直線y=-x-1的最短距離是$\frac{\sqrt{2}}{2}$.

分析 函數(shù)f(x)=$\frac{1}{x}$上的點(diǎn)到直線y=-x-1的距離是d=$\frac{|x+\frac{1}{x}+1|}{\sqrt{2}}$≥$\frac{|-2+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,即可得出結(jié)論.

解答 解:設(shè)f(x)=$\frac{1}{x}$上的點(diǎn)(x,$\frac{1}{x}$),則
函數(shù)f(x)=$\frac{1}{x}$上的點(diǎn)到直線y=-x-1的距離是d=$\frac{|x+\frac{1}{x}+1|}{\sqrt{2}}$≥$\frac{|-2+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
當(dāng)且僅當(dāng)x=-1時取等號,
∴函數(shù)f(x)=$\frac{1}{x}$上的點(diǎn)到直線y=-x-1的最短距離是$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查函數(shù)f(x)=$\frac{1}{x}$上的點(diǎn)到直線y=-x-1的最短距離,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l1的方程為3x+4y-12=0,
(1)求l2的方程,使得:①l2與l1平行,且過點(diǎn)(-1,3);
②l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4;
(2)直線l1與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))內(nèi)切圓及外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知ab<0,則$\frac{a}$+$\frac{a}$的取值范圍是( 。
A.(-∞,-2)B.(-∞,-2]C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線$\left\{\begin{array}{l}{x=2-tsin30°}\\{y=-1+tsin30°}\end{array}\right.$(t為參數(shù))與圓x2+y2=8相交于B、C兩點(diǎn),O為原點(diǎn),則△BOC的面積為( 。
A.2$\sqrt{7}$B.$\sqrt{30}$C.$\frac{\sqrt{15}}{2}$D.$\frac{\sqrt{30}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用與球心距離為1的平面去截半徑為2的球,則截面面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.乒乓球單打比賽在甲、乙兩名運(yùn)動員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求乙以4比1獲勝的概率;
(2)求甲獲勝且比賽局?jǐn)?shù)多于5局的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{xn}滿足:x1=$\frac{1}{3}$,xn+1=x${\;}_{n}^{2}$+xn,則下述和數(shù)$\frac{1}{{1+{x_1}}}+\frac{1}{{1+{x_2}}}+\frac{1}{{1+{x_3}}}+…\frac{1}{{1+{x_{2016}}}}$的整數(shù)部分的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=30.1,b=logπ2,c=log2sin$\frac{2π}{3}$.則(  )
A.c>a>bB.a>b>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α是第三象限角,sinα=-$\frac{5}{13}$,則cosα=( 。
A.-$\frac{5}{13}$B.-$\frac{12}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

同步練習(xí)冊答案