【題目】如圖所示,在底面為梯形的四棱錐S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求證:AC⊥SD;

(2)求三棱錐B﹣SAD的體積.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)取AC中點(diǎn)O,連結(jié)OD,SO,由等腰三角形的性質(zhì)可知AC⊥SO,AC⊥OD,故AC⊥平面SOD,于是AC⊥SD;

(2)由△ASC是等邊三角形可求得SO,AC,結(jié)合已知條件,利用勾股定理得AD⊥CD,SO⊥OD,故SO⊥平面ABCD,再利用三棱錐體積轉(zhuǎn)化計(jì)算即可.

(1)取AC中點(diǎn)O,連結(jié)OD,SO,∵SA=SC,∴SO⊥AC,∵AD=CD,∴OD⊥AC,

又∵OS平面SOD,OD平面SOD,OS∩OD=O,∴AC⊥平面SOD,∵SD平面SOD,∴AC⊥SD.

(2)∵SA=SC=2,∠ASC=60°,∴△ASC是等邊三角形,∴AC=2,OS=,

∵AD=CD=,∴AD2+CD2=AC2,∴∠ADC=90°,OD==1.

∵SD=2,∴SO2+OD2=SD2,∴SO⊥OD,

又∵SO⊥AC,AC平面ABCD,OD平面ABCD,AC∩OD=O,∴SO⊥平面ABCD,

∴V棱錐B﹣SAD=V棱錐S﹣ABDS△ABDSO=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)是檢測(cè)空氣質(zhì)量的重要參數(shù),其數(shù)值越大說(shuō)明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門(mén)統(tǒng)計(jì)了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說(shuō)法錯(cuò)誤的是( )

A. 該地區(qū)在該月2日空氣質(zhì)量最好

B. 該地區(qū)在該月24日空氣質(zhì)量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:

①在函數(shù)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為;

②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

的必要不充分條件;

④在中,若,則角等于.

其中是真命題的序號(hào)為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),中點(diǎn),與直線相交于.

(1)當(dāng)垂直時(shí),求的方程;

(2)當(dāng)時(shí),求直線的方程;

(3)探究是否與直線的傾斜角有關(guān)?若無(wú)關(guān),求出其值;若有關(guān),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個(gè)必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上一動(dòng)點(diǎn)P到定點(diǎn)C1,0)的距離與它到直線的距離之比為.

1)求點(diǎn)P的軌跡方程;

2)點(diǎn)O是坐標(biāo)原點(diǎn),A,B兩點(diǎn)在點(diǎn)P的軌跡上,F是點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠抽取了在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.

(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)若質(zhì)量指標(biāo)值在之內(nèi)為一等品.

(i)用樣本估計(jì)總體,問(wèn)該工廠一天生產(chǎn)的產(chǎn)品是否有以上為一等品?

(ii)某天早上、下午分別抽檢了50件產(chǎn)品,完成下面的表格,并根據(jù)已有數(shù)據(jù),判斷是否有的把握認(rèn)為一等品率與生產(chǎn)時(shí)間有關(guān)?

一等品個(gè)數(shù)

非一等品個(gè)數(shù)

總計(jì)

早上

36

50

下午

26

50

總計(jì)

附:.

0.25

0.15

0.10

0.050

0.010

0.001

1.323

2.072

2.706

3.841

6.635

10.828

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊(cè)答案