在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.
分析:(Ⅰ)由橢圓方程求出兩個(gè)頂點(diǎn)A,B的坐標(biāo),設(shè)出P點(diǎn)坐標(biāo),寫(xiě)出直線AP、BP的斜率k1,k2,結(jié)合P的坐標(biāo)適合橢圓方程可證結(jié)論;
(Ⅱ)分別求出M和N點(diǎn)的坐標(biāo),由(Ⅰ)中的結(jié)論得到兩直線斜率間的關(guān)系,把|MN|用含有一個(gè)字母的代數(shù)式表示,然后利用基本不等式求最值;
(Ⅲ)設(shè)出以MN為直徑的圓上的動(dòng)點(diǎn)Q的坐標(biāo),由
QM
QN
=0
列式得到圓的方程,化為圓系方程后聯(lián)立方程組可求解圓所過(guò)定點(diǎn)的坐標(biāo).
解答:(Ⅰ)證明:由題設(shè)橢圓C:
x2
4
+y2
=1可知,點(diǎn)A(0,1),B(0,-1).
令P(x0,y0),則由題設(shè)可知x0≠0.
∴直線AP的斜率k1=
y0-1
x0
,PB的斜率為k2=
y0+1
x0

又點(diǎn)P在橢圓上,所以
x02
4
+y02=1(x0≠0)
,從而有k1k2=
y0-1
x0
y0+1
x0
=
y02-1
x02
=-
1
4
;
(Ⅱ)解:由題設(shè)可得直線AP的方程為y-1=k1(x-0),
直線PB的方程為y-(-1)=k2(x-0).
y-1=k1x
y=-2
,解得
x=-
3
k1
y=-2
;
y+1=k2x
y=-2
,解得
x=-
1
k2
y=-2

∴直線AP與直線l的交點(diǎn)N(-
3
k1
,-2
),直線PB與直線l的交點(diǎn)M(-
1
k2
,-2
).
∴|MN|=|
3
k1
-
1
k2
|,又k1k2=-
1
4

∴|MN|=|
3
k1
+4k1
|=
3
|k1|
+4|k1|≥2
3
|k1|
•4|k1|
=4
3

等號(hào)成立的條件是
3
|k1|
=4|k1|
,即k1
3
2

故線段MN長(zhǎng)的最小值為4
3

(Ⅲ)解:以MN為直徑的圓恒過(guò)定點(diǎn)(0,-2+2
3
)
(0,-2-2
3
)

事實(shí)上,設(shè)點(diǎn)Q(x,y)是以MN為直徑圓上的任意一點(diǎn),則
QM
QN
=0
,
故有(x+
3
k1
)(x+
1
k2
)+(y+2)(y+2)=0

k1k2=-
1
4
.所以以MN為直徑圓的方程為x2+(y+2)2-12+(
3
k1
-4k1)x=0

x=0
x2+(y+2)2-12=0
,解得
x=0
y=-2+2
3
x=0
y=-2-2
3

所以以MN為直徑的圓恒過(guò)定點(diǎn)(0,-2+2
3
)
(0,-2-2
3
)
點(diǎn)評(píng):本題考查了直線的斜率,考查了直線與圓錐曲線的關(guān)系,訓(xùn)練了代入法,考查了利用基本不等式求最值,考查了圓系方程,考查了學(xué)生的計(jì)算能力,是有一定難度題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案