【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形且∠DAB=60°OAD中點.

(Ⅰ)若PA=PD,求證:平面POB⊥平面PAD

(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,試問在線段PC上是否存在點M,使二面角M-BO-C的大小為30°,如存在,求的值,如不存在,說明理由.

【答案】1)詳見解析;(2)存在,

【解析】

)由題意可知,又為菱形且,所以,根據(jù)線面垂直的判定定理可得平面,然后再根據(jù)面面平行的判定定理可證平面平面;

)建立空間直角坐標系,利用二面角的余弦值列方程,由此求得的值.

)因為,中點,所以.

因為四邊形為菱形且,所以.因為,所以平面.因為平面,所以平面平面.

)因為平面平面,且交線為,所以平面.為坐標原點,軸建立空間直角坐標系如圖所示.

所以,設,所以.平面的法向量為.設平面的法向量為,則,令,則可得.

由于二面角的大小為,所以,即,解得.所以存在點使二面角的大小為,且.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得,,

1)求家庭的月儲蓄對月收入的線性回歸方程;

2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

(附:線性回歸方程中,,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部80,每人都走訪了若干貧困戶,按照分層抽樣,三鎮(zhèn)共選40名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5,,繪制成如圖所示的頻率分布直方圖.

(1)求這40人中有多少人來自鎮(zhèn),并估計三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,三鎮(zhèn)的所有基層干部中隨機選取3,記這3人中工作出色的人數(shù)為,的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+sin x,x∈(-1,1),則滿足f(a2-1)+f(a-1)>0的a的取值范圍是( )

A. (0,2)B. (1,)C. (1,2)D. (0,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的圖像與曲線恰好有兩個不同的公共點,則實數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于、兩點,為坐標原點.

(1)若直線斜率為1,過橢圓的右焦點,求弦的長;

(2)若,且為銳角,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點作斜率為1的直線交拋物線兩點,且線段的中點的縱坐標為4.

(1)求拋物線的標準方程;

(2)若不過原點且斜率存在的直線與拋物線相交于、兩點,且.求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計時,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差.某高二班主任為了了解學生的偏科情況,對學生數(shù)學偏差(單位:分)與歷史偏差(單位:分)之間的關系進行學科偏差分析,決定從全班52位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學生序號

1

2

3

4

5

6

7

8

數(shù)學偏差

20

15

13

3

2

歷史偏差

1)已知之間具有線性相關關系,求關于的線性回歸方程;

2)若這次考試該班數(shù)學平均分為118分,歷史平均分為,試預測數(shù)學成績126分的同學的歷史成績.

附:參考公式與參考數(shù)據(jù)

,,

查看答案和解析>>

同步練習冊答案