19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,A1,A2為其左、右頂點,以線段F1F2為直徑的圓與雙曲線的漸進線在第一象限的交點為M,且∠MA1A2=45°,則雙曲線的離心率為$\sqrt{5}$.

分析 先根據(jù)條件得到圓的方程以及漸近線方程,聯(lián)立求出點M的坐標,結合tan∠MA1A2=$\frac{2a}$=tan45°求出a,b之間的關系,進而求出離心率即可.

解答 解:由題得以F1F2為直徑的圓的圓心是(0,0),半徑為:c;
故圓的標準方程為:x2+y2=c2;
又雙曲線的其中一條漸近線方程為:y=$\frac{a}$x
聯(lián)立可得M(a,b).
故MA2垂直于A1A2;
所以tan∠MA1A2=$\frac{2a}$=tan45°;
所以b=2a,c=$\sqrt{5}$a.
故雙曲線的離心率為$\sqrt{5}$.
故答案為$\sqrt{5}$

點評 本題主要考察雙曲線的簡單性質.解決本題得關鍵在于根據(jù)條件得到圓的方程以及漸近線方程,聯(lián)立求出點M的坐標,結合tan∠MA1A2=$\frac{2a}$=tan45°求出a,b之間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知橢圓x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1),其左、右焦點分別為F1、F2,|F1F2|=2c.若此橢圓上存在點P,使P到直線x=$\frac{1}{c}$的距離是|PF1|與|PF2|的等差中項,則b的最大值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,D為BC邊上一點,AD=BD,AC=4,BC=5.
(1)若∠C=60°,求△ABC外接圓半徑R的值;
(2)設∠CAB-∠B=θ,若$tanθ=\frac{{\sqrt{15}}}{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)z的實部和虛部相等,且z(2+i)=3-bi(b∈R),則|z|=( 。
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖1,菱形ABCD的邊長為12,∠BAD=60°,AC與BD交于O點.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=6$\sqrt{2}$.

( I)求證:平面ODM⊥平面ABC;
( II)求二面角M-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$\frac{1}{2}$≤m≤3,函數(shù)f(x)=ln(x+2)+$\frac{m}{2}{x^2}$-2.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若$?m∈[{\frac{1}{2},3}]$,對任意的x1,x2∈[0,2](x1≠x2),不等式|f(x1)-f(x2)|<t|$\frac{1}{{{x_1}+2}}-\frac{1}{{{x_2}+2}}$|恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列命題中,正確的命題序號是①③④.
①已知a∈R,兩直線l1:ax+y=1,l2:x+ay=2a,則“a=-1”是“l(fā)1∥l2”的充分條件;
②命題p:“?x≥0,2x>x2”的否定是“?x0≥0,2x0<x02”;
③“sinα=$\frac{1}{2}$”是“α=2kπ+$\frac{π}{6}$,k∈Z”的必要條件;
④已知a>0,b>0,則“ab>1”的充要條件是“a>$\frac{1}$”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知(ax+1)5的展開式中各項系數(shù)和為243,則二項式${({\frac{3x}{a}-\frac{1}{{\root{3}{x}}}})^5}$的展開式中含x項的系數(shù)為-$\frac{45}{2}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖是半徑分別為1,2,3的三個同心圓,現(xiàn)隨機向最大圓內(nèi)拋一粒豆子,則豆子落入圖中陰影部分的概率為$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案