已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別是A、B,過點(diǎn)的動(dòng)直線與橢圓交于M,N兩點(diǎn),連接AN、BM相交于G點(diǎn),試求點(diǎn)G的橫坐標(biāo)的值.
(1)橢圓C方程是;(2)G的橫坐標(biāo)的值為8.

試題分析:(1)由,又點(diǎn)在橢圓上,所以,這樣便得一方程組,解這個(gè)方程組求出a、b的值,即可得橢圓C的方程;(2)首先考慮直線MN垂直于軸的情況,易得此時(shí)交點(diǎn)為,由此可知,點(diǎn)G的橫坐標(biāo)應(yīng)當(dāng)為8.當(dāng)直線MN不垂直軸時(shí),設(shè)直線MN:,.由A、N、G三點(diǎn)共線有,由A、N、G三點(diǎn)共線有,有,即,化簡(jiǎn),當(dāng)時(shí)化簡(jiǎn)得.接下來聯(lián)立直線MN與橢圓方程再用韋達(dá)定理代入此等式驗(yàn)證即可.
(1)由,又點(diǎn)在橢圓上,所以解得,則橢圓C方程是;                   .3分
(2)當(dāng)直線MN垂直于軸,交點(diǎn)為,
由題知直線AN:,直線MB:,交點(diǎn)     .5分
當(dāng)直線MN不垂直軸時(shí),設(shè)直線MN:,
聯(lián)立直線MN與橢圓方程得
,        .7分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524499671276.png" style="vertical-align:middle;" />,由A、N、G三點(diǎn)共線有
同理,由A、N、G三點(diǎn)共線有
,即,化簡(jiǎn),驗(yàn)證當(dāng)時(shí)化簡(jiǎn)得帶入韋達(dá)定理恒成立,因此G的橫坐標(biāo)的值為8.   13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:)的左焦點(diǎn)為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.當(dāng)四邊形OPTQ是平行四邊形時(shí),求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,相交于直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率,.

(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交軸于點(diǎn)N,直線AD交BP于點(diǎn)M。設(shè)BP的斜率為,MN的斜率為.證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(1,0),B (2,0) .動(dòng)點(diǎn)M滿足
(1)求點(diǎn)M的軌跡C;
(2)若過點(diǎn)B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點(diǎn)E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:的左、右焦點(diǎn)為、,離心率為,過的直線交C于A、B兩點(diǎn),若的周長(zhǎng)為,則C的方程為
A.    B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是平面兩定點(diǎn),點(diǎn)滿足,則點(diǎn)的軌跡方程是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在棱長(zhǎng)為的正方體中,點(diǎn)是正方體棱上一點(diǎn)(不包括棱的端點(diǎn)),,
①若,則滿足條件的點(diǎn)的個(gè)數(shù)為________;
②若滿足的點(diǎn)的個(gè)數(shù)為,則的取值范圍是________

查看答案和解析>>

同步練習(xí)冊(cè)答案