【題目】如圖,經(jīng)過點作兩條互相垂直的直線和,直線交軸正半軸于點,直線交軸正半軸于點.
(1)如果,求點的坐標(biāo).
(2)試問是否總存在經(jīng)過, , , 四點的圓?如果存在,求出半徑最小的圓的方程;如果不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明計劃在8月11日至8月20日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽天.
(1)求小明連續(xù)兩天都遇上擁擠的概率;
(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;
(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知,且成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
K日 日期期 | 1日 | 2日 | 3日 | 4日 | 5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
(1)求這5天發(fā)芽數(shù)的中位數(shù);
(2)求這5天的平均發(fā)芽率;
(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(m,n)的形式列出所有基本事件,并求滿足“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),.若函數(shù)的最小值是,求的值;
(3)若函數(shù),的定義域都是,對于函數(shù)的圖象上的任意一點,在函數(shù)的圖象上都存在一點,使得,其中是自然對數(shù)的底數(shù),為坐標(biāo)原點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com