14.已知全集U,集合A={1,3,5},∁UA={2,4,6},則全集U={1,2,3,4,5,6}.

分析 根據(jù)補集的定義寫出全集即可.

解答 解:全集U,集合A={1,3,5},
UA={2,4,6},
所以全集U={1,2,3,4,5,6}.
故答案為:{1,2,3,4,5,6}.

點評 本題考查了補集的定義與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.用固定的速度向如圖形狀的瓶子中注水,則水面的高度h和時間t之間的關系可用圖象大致表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤1}\\{{x}^{2}-3ax+4a,x>1}\end{array}\right.$有三個不同零點,則a的范圍是( 。
A.$({\frac{16}{9},2})$B.$({\frac{16}{9},+∞})∪({-∞,0})$C.$({\frac{16}{9},2}]$D.$({\frac{2}{3},2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若f′(x)是f(x)=$\frac{1}{3}$x3-2x+1的導函數(shù),則f′(2)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,設A、B、C、D為球O上四點,若AB、AC、AD兩兩互相垂直,且AB=AC=$\sqrt{6}$,AD=2,則球O的體積為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為$\frac{1}{7}$,現(xiàn)有甲、乙兩人從袋中輪流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取兩次,若兩人中有一人首先取到白球時則終止,每個球在每一次被取出的機會是等可能的.   
(1)求袋中原有白球的個數(shù);
(2)求甲取到白球的概率;
(3)求取球4次終止的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.集合A={y|y=2x},B=|x|y=lg(2x-1)},則A∩B=( 。
A.{y|y≥0}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{y|y>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知正三棱臺(上、下底面是正三角形,上底面的中心在下底面的投影是下底面的中心)的上下底面邊長分別是2cm和4cm,側棱長是$\sqrt{6}$cm,試求該三棱臺的側面積與體積(V棱臺=$\frac{1}{3}$(S+$\sqrt{SS′}$+S′)h).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知cot(α+$\frac{π}{3}}$)=-3,則tan(2α-$\frac{π}{3}}$)=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

同步練習冊答案