【題目】某校學(xué)生會(huì)為了解高二年級(jí)600名學(xué)生課余時(shí)間參加中華傳統(tǒng)文化活動(dòng)的情況(每名學(xué)生最多參加7).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

則以下四個(gè)結(jié)論中正確的是( )

A.表中的數(shù)值為10

B.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場數(shù)不高于2場的學(xué)生約為108

C.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場數(shù)不低于4場的學(xué)生約為216

D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15

【答案】C

【解析】

利用百分比和為1可判斷A;通過表格計(jì)算,可判斷B,C;根據(jù)系統(tǒng)抽樣的定義可判斷D.

,得,故A錯(cuò)誤;

活動(dòng)次數(shù)不高于2場的學(xué)生約,即約為228人,故B錯(cuò)誤;參加傳統(tǒng)文化活動(dòng)次數(shù)不低于4場的學(xué)生為人,故C是正確的;

D中的分段間隔應(yīng)為,故D錯(cuò)誤;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是離心率為的橢圓的左、右焦點(diǎn),過軸的垂線交橢圓所得弦長為,設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),線段的中垂線與橢圓交于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為1.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用電,國家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).

階梯級(jí)別

第一階梯

第二階梯

第三階梯

月用電范圍(度)

(0,210]

(210,400]

某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:

居民用電戶編號(hào)

1

2

3

4

5

6

7

8

9

10

用電量(度)

53

86

90

124

132

200

215

225

300

410

若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)電費(fèi)多少元?

現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;

以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的高速發(fā)展,汽車的銷量也快速增加,每年因道路交通安全事故造成傷亡人數(shù)超過萬人,根據(jù)國家質(zhì)量監(jiān)督檢驗(yàn)檢疫局發(fā)布的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》(-醉駕車的測試)的規(guī)定:飲酒駕車是指車輛駕駛?cè)藛T血液中的酒精含量大于或者等于,小于的駕駛行為;醉酒駕車是指車輛駕駛?cè)藛T血液中的酒精含量大于或者等于的駕駛行為,某市交通部門從年飲酒后駕駛機(jī)動(dòng)車輛發(fā)生交通事故的駕駛員中隨機(jī)抽查了人進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

酒精含量

發(fā)生交通事故的人數(shù)

已知從這人中任意抽取兩人,兩人均是醉酒駕車的概率是.

1)求的值;

2)實(shí)踐證明,駕駛?cè)藛T血液中的酒精含量與發(fā)生交通事故的人數(shù)具有線性相關(guān)性,試建立關(guān)于的線性回歸方程;

3)試預(yù)測,駕駛?cè)藛T血液中的酒精含量為多少時(shí),發(fā)生交通事故的人數(shù)會(huì)超過取樣人數(shù)的?

參考數(shù)據(jù):,

回歸直線方程中系數(shù)計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動(dòng). 活動(dòng)后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;

(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個(gè)閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

(注:,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某綠色有機(jī)水果店中一款有機(jī)草莓味道鮮甜,店家每天以每斤元的價(jià)格從農(nóng)場購進(jìn)適量草莓,然后以每斤元的價(jià)格出售,如果當(dāng)天賣不完,剩下的草莓由果汁廠以每斤元的價(jià)格回收.

(1)若水果店一天購進(jìn)斤草莓,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:斤,)的函數(shù)解析式;

(2)水果店記錄了天草莓的日需求量(單位:斤),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

14

22

14

16

15

13

6

①假設(shè)水果店在這天內(nèi)每天購進(jìn)斤草莓,求這天的日利潤(單位:元)的平均數(shù);

②若水果店一天購進(jìn)斤草莓,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為R上的偶函數(shù),當(dāng)時(shí)當(dāng)時(shí),對(duì)恒成立,函數(shù)的一個(gè)周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個(gè)公共點(diǎn),則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,點(diǎn)D、E、F分別為線段A1C1、AB、A1A的中點(diǎn),A1AACBC,∠ACB90°.求證:

1DE∥平面BCC1B1;

2EF⊥平面B1CE

查看答案和解析>>

同步練習(xí)冊(cè)答案