【題目】一輛賽車在一個周長為的封閉跑道上行駛,跑道由幾段直道和彎道組成,圖反映了賽車在“計時賽”整個第二圈的行駛速度與行駛路程之間的關(guān)系.
圖1
圖2
根據(jù)圖有以下四個說法:
①在這第二圈的到之間,賽車速度逐漸增加;
②在整個跑道中,最長的直線路程不超過;
③大約在這第二圈的到之間,賽車開始了那段最長直線路程的行駛;
④在圖的四條曲線(注:為初始記錄數(shù)據(jù)位置)中,曲線最能符合賽車的運動軌跡.
其中,所有正確說法的序號是( )
A. ①②③ B. ②③ C. ①④ D. ③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當年產(chǎn)量不足80千件時,C(x)= x2+10x(萬元);當年產(chǎn)量不小于80千件時C(x)=51x+ ﹣1450(萬元),通過市場分析,若每件售價為500元時,該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同時具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線 對稱;③在 上是增函數(shù).”的一個函數(shù)為( )
A.
B. ??
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn和通項an滿足 (g是常數(shù),且(q>0,q≠1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)當 時,試證明 ;
(Ⅲ)設(shè)函數(shù).f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使 對n∈N*?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當x∈[0,2)時,f(x)=﹣2x2+4x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:(x+cos)2+(y-sin)2=1,直線l:y=kx,下面四個命題:
(A)對任意實數(shù)k與,直線l和圓M相切;
(B)對任意實數(shù)k與,直線l和圓M有公共點;
(C)對任意實數(shù),必存在實數(shù)k,使得直線l與和圓M相切;
(D)對任意實數(shù)k,必存在實數(shù),使得直線l與和圓M相切.
其中真命題的代號是______________(寫出所有真命題的代號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)從高三男生中隨機抽取名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如下所示,
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 0.350 | ||
第3組 | 30 | ||
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 1.00 |
(Ⅰ)求出頻率分布表中①和②位置上相應(yīng)的數(shù)據(jù),并完成下列頻率分布直方圖;
(Ⅱ)為了能對學(xué)生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣抽取6名學(xué)生進行不同項目的體能測試,若在這6名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,則第4組中至少有一名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,ab≠0,給出下面四個命題:①a2+b2≥﹣2ab;② ≥2;③若a<b,則ac2<bc2;④若 .則a>b;其中真命題有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com