【題目】在四棱錐P﹣ABCD中, , ,△PAB和△PBD都是邊長(zhǎng)為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.

【答案】
(1)證明:∵△PAB和△PBD都是等邊三角形,

∴PA=PB=PD,

又∵PO⊥底面ABCD,

∴OA=OB=OD,

則點(diǎn)O為△ABD的外心,又因?yàn)椤鰽BD是直角三角形,

∴點(diǎn)O為AD中點(diǎn)


(2)證明:由(1)知,點(diǎn)P在底面的射影為點(diǎn)O,點(diǎn)O為AD中點(diǎn),

于是PO⊥面ABCD,

∴BC⊥PO,

∵在Rt△ABD中,BD=BA,OB⊥AD,

,

,∴

從而 即CB⊥BO,

由BC⊥PO,CB⊥BO得CB⊥面PBO,

∴BC⊥PB


(3)解:以點(diǎn)O為原點(diǎn),以O(shè)B,OD,OP所在射線為x軸,y軸,z軸建系如圖,

∵AB=2,則O(0,0,0), , , , , , ,

設(shè)面PAB的法向量為 ,則 ,得 , ,

取x=1,得y=﹣1,z=1,

設(shè)面PBC的法向量為 ,則 ,得s=0, ,

取r=1,則t=1,故 ,

于是 ,

由圖觀察知A﹣PB﹣C為鈍二面角,

所以該二面角的余弦值為-


【解析】(1)證明PO⊥底面ABCD,說(shuō)明點(diǎn)O為△ABD的外心,然后判斷點(diǎn)O為AD中點(diǎn).(2)證明PO⊥面ABCD,推出BC⊥PO,證明CB⊥BO,BC⊥PO,證明CB⊥面PBO,推出BC⊥PB.(3)以點(diǎn)O為原點(diǎn),以O(shè)B,OD,OP所在射線為x軸,y軸,z軸建系,求出相關(guān)點(diǎn)的坐標(biāo),平面PAB的法向量,平面PBC的法向量,利用空間向量的數(shù)量積求解所以該二面角的余弦值即可.
【考點(diǎn)精析】利用直線與平面垂直的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知垂直于同一個(gè)平面的兩條直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形BCEF所成角的二面角的平面角的大小是 ,PQ是正方形BDEF所在平面內(nèi)的一條動(dòng)直線,則直線BD與PQ所成角的取值范圍是(

A.[ , ]
B.[ , ]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過(guò)M上任意一點(diǎn)P作圓C的兩條切線PA,PB,切點(diǎn)分別為A、B,則∠APB的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)證明:{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若 ,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度,得到函數(shù)y=f(x)圖象在區(qū)間 上單調(diào)遞減,則m的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定義 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N滿足:N≠M(fèi),且T(M)=T(N),求出一個(gè)符合條件的N;
(Ⅱ)對(duì)于任意給定的常數(shù)C以及給定的集合A={a1 , a2 , …,an},求證:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且
(Ⅲ)已知集合A={a1 , a2 , …,a2m}滿足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R為給定的常數(shù),求T(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案