設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BCx軸,證明:直線AC經(jīng)過(guò)原點(diǎn)O.

詳見(jiàn)解析

解析試題分析:證明直線AC經(jīng)過(guò)原點(diǎn)O,實(shí)質(zhì)證明三點(diǎn)共線,即證直線與直線的斜率相等. 設(shè)A(x1,y1),則只需證即可.利用三點(diǎn)共線,可用A(x1,y1)表示出點(diǎn)B縱坐標(biāo)為,從而點(diǎn)C的坐標(biāo)為(-,).因此直線CO的斜率為k===,所以直線AC經(jīng)過(guò)原點(diǎn)O.
試題解析:證:如圖所示,因?yàn)閽佄锞y2=2px(p>0)的焦點(diǎn)為F(,0),所以經(jīng)過(guò)點(diǎn)F的直線AB的方程可設(shè)為x=my+       2分
代入拋物線方程得y2-2pmy-p2=0.
若記A(x1,y1)、B(x2,y2),則y1、y2是該方程的兩個(gè)根,所以y1y2=-p2    7分.
因?yàn)锽C∥x軸,且點(diǎn)C在準(zhǔn)線x=-上,所以點(diǎn)C的坐標(biāo)為(-,y2).
故直線CO的斜率為k===,
即k也是直線OA的斜率,所以直線AC經(jīng)過(guò)原點(diǎn)O.        12分
考點(diǎn):直線與拋物線位置關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

P為圓A:上的動(dòng)點(diǎn),點(diǎn).線段PB的垂直平分線與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點(diǎn)P在第一象限,且時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)雙曲線的左焦點(diǎn),作傾斜角為的直線交該雙曲線右支于點(diǎn),若,且,則雙曲線的離心率為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過(guò)點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率e=,過(guò)左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過(guò)P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫(xiě)出對(duì)應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點(diǎn)到漸近線的距離為.

(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點(diǎn),A、B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若,λ∈.求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過(guò)點(diǎn)(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓=1的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),求點(diǎn)P的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案