如圖,某市新體育公園的中心廣場(chǎng)平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時(shí)的圖象且最高點(diǎn)B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.⑴試確定A,的值;⑵現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點(diǎn)C與半圓弧上的一點(diǎn)D之間設(shè)計(jì)為直線段(造價(jià)為2萬(wàn)元/米),從D到點(diǎn)O之間設(shè)計(jì)為沿半圓弧的弧形(造價(jià)為1萬(wàn)元/米).設(shè)(弧度),試用來(lái)表示修建步行道的造價(jià)預(yù)算,并求造價(jià)預(yù)算的最大值?(注:只考慮步行道的長(zhǎng)度,不考慮步行道的寬度)

(1),;(2)造價(jià)預(yù)算,,造價(jià)預(yù)算最大值為()萬(wàn)元.

解析試題分析:(1)此小題實(shí)質(zhì)是考查利用三角函數(shù)圖像求三角解析式問(wèn)題,由最高點(diǎn)B的坐標(biāo)可求得A的值,又四分之一周期為3,易求得,在此情況下,把B點(diǎn)坐標(biāo)代入三角解析式中可求得;(2)本小題中步行道分兩部分組成,(如圖)一部分在扇形中利用弧長(zhǎng)公式:求得,另一部分在中利用直角三角形的邊角關(guān)系求得,兩項(xiàng)相加可得關(guān)于的造價(jià)預(yù)算函數(shù),再用導(dǎo)數(shù)工具求得其最值.
試題解析:⑴因?yàn)樽罡唿c(diǎn)B(-1,4),所以A=4;又,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/7/rwe431.png" style="vertical-align:middle;" />,代入點(diǎn)B(-1,4),,又;⑵由⑴可知:,得點(diǎn)C,取CO中點(diǎn)F,連結(jié)DF,因?yàn)榛D為半圓弧,所以,即 ,則圓弧段造價(jià)預(yù)算為萬(wàn)元,中,,則直線段CD造價(jià)預(yù)算為萬(wàn)元,所以步行道造價(jià)預(yù)算,.由得當(dāng)時(shí),,當(dāng)時(shí),,即上單調(diào)遞增;當(dāng)時(shí),,即上單調(diào)遞減,所以時(shí)取極大值,也即造價(jià)預(yù)算最大值為()萬(wàn)元.
(圖
考點(diǎn):利用三角函數(shù)圖像求三角解析式問(wèn)題,導(dǎo)數(shù)求函數(shù)最值問(wèn)題(要關(guān)注函數(shù)定義域),數(shù)形結(jié)合思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(wx+j)(w>0,<j<0)圖象上的任意兩點(diǎn),且角j的終邊經(jīng)過(guò)點(diǎn)P(l,-),若|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為.
(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)當(dāng)x∈時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)用  表示的值;
(2)求函數(shù)的最大值和最小值.
(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且.求:
(1)的值;(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期;
(2)已知中,角所對(duì)的邊長(zhǎng)分別為,若,,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,內(nèi)角所對(duì)邊長(zhǎng)分別為,
(1)求的最大值及的取值范圍;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:



















 
(1)請(qǐng)求出上表中的,并直接寫(xiě)出函數(shù)的解析式;
(2)將的圖象沿軸向右平移個(gè)單位得到函數(shù),若函數(shù)(其中)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/3/1d1gb3.png" style="vertical-align:middle;" />,且此時(shí)其圖象的最高點(diǎn)和最低點(diǎn)分別為,求夾角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=2cosxsin(x+)-sin2x+sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象沿x軸向右平移m個(gè)單位后的圖象關(guān)于直線x=對(duì)稱(chēng),求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù),若,x的取值范圍為      

查看答案和解析>>

同步練習(xí)冊(cè)答案