【題目】命題方程表示橢圓,命題恒成立;

1)若命題為真命題,求實數(shù)的取值范圍;

2)若命題為真,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】

1)根據(jù)方程表示橢圓,得到,求解,即可得出結(jié)果;

2)先由(1),得到命題等價于;再由命題等價于不等式恒成立;得到命題等價于;根據(jù)命題為真,得到命題為假,命題為真,進而可求出結(jié)果.

1)若方程表示橢圓,則橢圓標(biāo)準(zhǔn)方程為

所以只需要,即;

即命題為真命題時,實數(shù)的取值范圍為

2)由(1)可知:命題等價于

命題恒成立,等價于不等式,恒成立;

①當(dāng)時,不等式顯然成立;

②當(dāng)時,只需,即,即

綜上可知:;即命題等價于

因為命題為真,所以命題為假,命題為真,

,解得:.

即實數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中AB兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計該校學(xué)生中上個月A,B兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學(xué)生中隨機抽取1人,求該學(xué)生上個月支付金額大于2000元的概率;

(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓,拋物線的焦點的一個頂點,設(shè)上的動點,且位于第一象限,記在點處的切線為.

1)求的值和切線的方程(用表示)

2)設(shè)交于不同的兩點,線段的中點為,直線與過且垂直于軸的直線交于點.

i)求證:點在定直線上;

ii)設(shè)軸交于點,記的面積為的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,,,E為AB的中點沿CE折起,使點B到達點F的位置,且平面CEF與平面ADCE所成的二面角為

求證:平面平面AEF;

求直線DF與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應(yīng)年份序號的數(shù)據(jù)表和散點圖如圖所示,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)單位:個關(guān)于x的回歸方程

年份序號x

1

2

3

4

5

6

7

8

9

年養(yǎng)殖山羊萬只

根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程參考統(tǒng)計量:,;

試估計:該縣第一年養(yǎng)殖山羊多少萬只

到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.表是甲流水線樣本頻數(shù)分布表,圖是乙流水線樣本頻率分布直方圖.

表甲流水線樣本頻數(shù)分布表

產(chǎn)品質(zhì)量/

頻數(shù)

490495]

6

495,500]

8

500505]

14

505,510]

8

510515]

4

1)若以頻率作為概率,試估計從兩條流水線分別任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;

2)由以上統(tǒng)計數(shù)據(jù)作出2×2列聯(lián)表,并回答能否有95%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān)

χ2

甲流水線

乙流水線

總計

合格品

不合格品

總計

查看答案和解析>>

同步練習(xí)冊答案