(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點.
(1)求該橢圓的標準方程;
(2)過橢圓的一個焦點且互相垂直的直線分別與橢圓交于和,是否存在常數(shù),使得?若存在,求出實數(shù)的值;若不存在,請說明理由.
(1)(2)存在實數(shù),使得.理由見解析
解析試題分析:(1)由題可知,即,
由此得,故橢圓方程是,
將點的坐標代入,得,解得,
故橢圓方程是. ……4分
(2)問題等價于,即是否是定值問題.
橢圓的焦點坐標是,不妨取焦點,
當直線的斜率存在且不等于零時,
設(shè)直線的斜率為,則直線的方程是,
代入橢圓方程并整理得
設(shè),則. ……6分
根據(jù)弦長公式,
=
== ……8分
以代換,得 ……9分
所以
即 ……10分
當直線的斜率不存在或等于零時,
一個是橢圓的長軸長,一個是通徑長度,
此時,即.
綜上所述,故存在實數(shù),使得. ……12分
考點:本小題主要考查橢圓標準方程的求解和直線與橢圓的位置關(guān)系以及弦長公式的應用,考查學生的轉(zhuǎn)化能力和運算能力.
點評:圓錐曲線問題一般難度較大,要仔細分析,仔細運算,另外設(shè)直線方程時,要考慮到直線的斜率是否存在.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點為點關(guān)于軸的對稱點,判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)
已知橢圓的中心在坐標原點,長軸長為,離心率,過右焦點的直線交
橢圓于,兩點:
(Ⅰ)求橢圓的方程;(Ⅱ)當直線的斜率為1時,求的面積;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知平面內(nèi)一動點P到F(1,0)的距離比點P到軸的距離少1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線于點,且
,,
求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓過橢圓的兩焦點,與橢圓有且僅有兩個與圓相切 ,與橢圓相交于兩點記
(1)求橢圓的方程
(2)求的取值范圍;
(3)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標準方程;
(2)若與均不重合,設(shè)直線的斜率分別為,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點,,是橢圓的兩焦點,且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點,且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C的中心在原點,焦點在軸上,左右焦點分別為,且,
點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)過的直線與橢圓相交于兩點,且的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com