分析 由x的范圍,可得-$\frac{π}{4}$<2x-$\frac{π}{4}$<0,可得cos(2x-$\frac{π}{4}$)的值,再由sin2x=sin[(2x-$\frac{π}{4}$)+$\frac{π}{4}$],運(yùn)用兩角和的正弦公式,以及sinx+cosx=$\sqrt{(sinx+cosx)^{2}}$,計(jì)算即可得到所求值.
解答 解:0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,
可得-$\frac{π}{4}$<2x-$\frac{π}{4}$<0,
則cos(2x-$\frac{π}{4}$)=$\sqrt{1-(-\frac{\sqrt{2}}{10})^{2}}$=$\frac{7\sqrt{2}}{10}$,
即有sin2x=sin[(2x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$[sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{π}{4}$)]
=$\frac{\sqrt{2}}{2}$×(-$\frac{\sqrt{2}}{10}$+$\frac{7\sqrt{2}}{10}$)=$\frac{3}{5}$,
則sinx+cosx=$\sqrt{(sinx+cosx)^{2}}$=$\sqrt{1+sin2x}$=$\sqrt{1+\frac{3}{5}}$
=$\frac{2\sqrt{10}}{5}$.
故答案為:$\frac{2\sqrt{10}}{5}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的求值,考查兩角和的正弦公式和同角基本關(guān)系式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{4}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A班的數(shù)學(xué)成績(jī)平均水平好于B班 | |
B. | B班的數(shù)學(xué)成績(jī)沒有A班穩(wěn)定 | |
C. | 下次考試B班的數(shù)學(xué)平均分要高于A班 | |
D. | 在第1次考試中,A、B兩個(gè)班的總平均分為98 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com