【題目】將四個編號為1,2,3,4的相同小球放入編號為1,2,3,4的四個盒子中,

1)若每個盒子放一個小球,求有多少種放法;

2)若每個盒子放一球,求恰有1個盒子的號碼與小球的號碼相同的放法種數(shù);

3)求恰有一個空盒子的放法種數(shù).

【答案】124;(28;(3144;

【解析】

試題(1)直接利用排列數(shù)公式即可;(2)先從四個球中選出一個與盒子號碼相同,再把剩余的三個分別放入號碼不同的盒子中;(3)先從四個盒子中選出一個空盒子,再把球分成2、11三組放入三個盒子中,屬于不平均分組問題.

試題解析:(1種;(2)先從四個球中選出一個與盒子號碼相同由種方法,再把剩余的三個分別放入號碼不同的盒子中有2種方法,所以有種;(3)先從四個盒子中選出一個空盒子有種方法,再把球分成2、1、1三組放入三個盒子中有種,所以有

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,,是線段的中點.

1)求證平面;

2)求二面角的大;

3)試在線段上一點,使得所成的角是60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關系,請求出相關系數(shù)(精確到0.01)并加以說明;

2)建立關于的回歸方程,預測2018年該地區(qū)患“三高”的人數(shù).

參考數(shù)據(jù):,,,.參考公式:相關系數(shù) 回歸方程 中斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“組”,否則為“組”,調查結果如下:

1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“組”用戶與“性別”有關?

2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“組”和“組”的人數(shù);

3)從(2)中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中在“組”的人數(shù)為,試求的分布列與數(shù)學期望.

參考公式: ,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.

(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式:,其中

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗,總結出了一套有關體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數(shù)學名著《九章算術》中.《九章算術·商功》:斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”下圖解釋了這段話中由一個長方體,得到塹堵陽馬、鱉臑的過程.已知塹堵的內切球(與各面均相切直徑1,則鱉臑的體積最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)函數(shù)處的切線與直線垂直,求實數(shù)的值;

2)若函數(shù)在定義域上有兩個極值點,且.

①求實數(shù)的取值范圍;

②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花卉經(jīng)銷商銷售某種鮮花,售價為每支5元,成本為每支2元.銷售宗旨是當天進貨當天銷售.當天未售出的當垃圾處理.根據(jù)以往的銷售情況,按 進行分組,得到如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖計算該種鮮花日需求量的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間中點值代表;

(2)該經(jīng)銷商某天購進了400支這種鮮花,假設當天的需求量為x枝,,利潤為y元,求關于的函數(shù)關系式,并結合頻率分布直方圖估計利潤不小于800元的概率.

查看答案和解析>>

同步練習冊答案