4.如圖,虛線部分是平面直角坐標(biāo)系四個象限的角平分線,實(shí)線部分是函數(shù)y=f(x)的部分圖象,則f(x)可能是( 。
A.x2sinxB.xsinxC.x2cosxD.xcosx

分析 判斷函數(shù)的奇偶性,結(jié)合函數(shù)圖象的特征,判斷函數(shù)的解析式即可.

解答 解:由函數(shù)的圖象可知函數(shù)是偶函數(shù),排除選項(xiàng)A,D,
因?yàn)閤>0時,xsinx≤x恒成立,x2cosx≤x2,即xcosx≤x,x=π時,不等式不成立,
所以C不正確,B正確;
故選:B.

點(diǎn)評 本題考查函數(shù)的圖象的判斷與應(yīng)用,解析式的判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,(x>0)}\\{{3^x},(x≤0)}\end{array}}$若f(a)=$\frac{1}{3}$,則實(shí)數(shù)a的值為-1或$\root{3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在四棱錐S-ABCD中,AD∥BC,AD⊥AB,CD⊥平面SAD,SA=AD=2,AB=1,SB=$\sqrt{5}$,SD=2$\sqrt{2}$,M,N分別為AB,SC的中點(diǎn).
(1)證明:AB∥CD;
(2)證明:平面SMC⊥平面SCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x>0,當(dāng)$x+\frac{81}{x}$的值最小時x的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)當(dāng)a<0時,討論f(x)的單調(diào)性;
(Ⅲ)若對任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是m≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?a∈R,且a>0,a+$\frac{1}{a}$≥2,命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=cos(2x+ϕ)(ϕ>0且為常數(shù)),下列命題錯誤的是( 。
A.不論ϕ取何值,函數(shù)f(x)的周期都是π
B.存在常數(shù)ϕ,使得函數(shù)f(x)是偶函數(shù)
C.不論ϕ取何值,函數(shù)f(x)在區(qū)間[$π-\frac{ϕ}{2},\frac{3π}{2}-\frac{ϕ}{2}$]都是減函數(shù)
D.函數(shù)f(x)的圖象,可由函數(shù)y=cos2x的圖象向右平移ϕ個單位得到

查看答案和解析>>

同步練習(xí)冊答案