【題目】人類(lèi)的四種血型與基因類(lèi)型的對(duì)應(yīng)為:O型的基因類(lèi)型為ii,A型的基因類(lèi)型為aiaa,B型的基因類(lèi)型為bibb,AB型的基因類(lèi)型為ab,其中ab是顯性基因,i是隱性基因.一對(duì)夫妻的血型一個(gè)是A型,一個(gè)是B型,請(qǐng)確定他們的子女的血型是0,A,BAB型的概率,并填寫(xiě)下表:

父母血型的基因類(lèi)型組合

子女血型的概率

O

A

B

AB

ai×bi

ai×bb

0

0

aa×bi

0

0

aa×bb

0

0

0

1

【答案】子女的血型是O,ABAB型的概率分別為,填表見(jiàn)解析

【解析】

列出子女血型的基因類(lèi)型的可能結(jié)果,分別數(shù)出四種血型對(duì)應(yīng)的基因類(lèi)型個(gè)數(shù)即可得解.

解:子女血型的基因類(lèi)型的可能結(jié)果如.ab,ai,bi,ii,ab,ab,bi,bi,ab,ai,ab,ai,ab,ab,ab,ab,16個(gè),且每個(gè)結(jié)果發(fā)生的可能性相等,在這16個(gè)結(jié)果中,

O型的基因類(lèi)型ii1個(gè),

A型的基因類(lèi)型aiaa3個(gè),

B型的基因類(lèi)型bibb3個(gè),

AB型的基因類(lèi)型ab9個(gè),

所以子女的血型是O,A,BAB型的概率分別為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下四個(gè)命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|,abf(a)f(b),ab1;

3若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)

其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)為

當(dāng)時(shí),若函數(shù)R上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;

設(shè),點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù)使得成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:①當(dāng)為任意實(shí)數(shù)時(shí),直線恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程是;②已知雙曲線的右焦點(diǎn)為,一條漸近線方程為 ,則雙曲線的標(biāo)準(zhǔn)方程是;③拋物線的準(zhǔn)線方程為;④已知雙曲線 ,其離心率,則的取值范圍是.

其中正確命題的序號(hào)是___________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C以坐標(biāo)軸為對(duì)稱(chēng)軸,以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,

求橢圓C的方程.

斜率為k的直線l過(guò)點(diǎn)F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OABC內(nèi)一點(diǎn),AOB=150°,BOC=90°,設(shè)=,=,=,||=2,||=1,||=3,試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,向量(cos B,cos C)(2ac,b),且

(1)求角B的大。

(2)b,求ac的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)求證:函數(shù)是增函數(shù);

(2)若函數(shù)上的值域是),求實(shí)數(shù)的取值范圍;

(3)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案