【題目】人類(lèi)的四種血型與基因類(lèi)型的對(duì)應(yīng)為:O型的基因類(lèi)型為ii,A型的基因類(lèi)型為ai或aa,B型的基因類(lèi)型為bi或bb,AB型的基因類(lèi)型為ab,其中a和b是顯性基因,i是隱性基因.一對(duì)夫妻的血型一個(gè)是A型,一個(gè)是B型,請(qǐng)確定他們的子女的血型是0,A,B或AB型的概率,并填寫(xiě)下表:
父母血型的基因類(lèi)型組合 | 子女血型的概率 | |||
O | A | B | AB | |
ai×bi | ||||
ai×bb | 0 | 0 | ||
aa×bi | 0 | 0 | ||
aa×bb | 0 | 0 | 0 | 1 |
【答案】子女的血型是O,A,B或AB型的概率分別為,填表見(jiàn)解析
【解析】
列出子女血型的基因類(lèi)型的可能結(jié)果,分別數(shù)出四種血型對(duì)應(yīng)的基因類(lèi)型個(gè)數(shù)即可得解.
解:子女血型的基因類(lèi)型的可能結(jié)果如.下ab,ai,bi,ii,ab,ab,bi,bi,ab,ai,ab,ai,ab,ab,ab,ab,共16個(gè),且每個(gè)結(jié)果發(fā)生的可能性相等,在這16個(gè)結(jié)果中,
O型的基因類(lèi)型ii有1個(gè),
A型的基因類(lèi)型ai或aa有3個(gè),
B型的基因類(lèi)型bi或bb有3個(gè),
AB型的基因類(lèi)型ab有9個(gè),
所以子女的血型是O,A,B或AB型的概率分別為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng).
其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)為
當(dāng)時(shí),若函數(shù)在R上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
設(shè),點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù)使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:①當(dāng)為任意實(shí)數(shù)時(shí),直線恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程是;②已知雙曲線的右焦點(diǎn)為,一條漸近線方程為 ,則雙曲線的標(biāo)準(zhǔn)方程是;③拋物線的準(zhǔn)線方程為;④已知雙曲線 ,其離心率,則的取值范圍是.
其中正確命題的序號(hào)是___________.(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C以坐標(biāo)軸為對(duì)稱(chēng)軸,以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過(guò)點(diǎn)F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是△ABC內(nèi)一點(diǎn),∠AOB=150°,∠BOC=90°,設(shè)=,=,=,且||=2,||=1,||=3,試用和表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大。
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)求證:函數(shù)是增函數(shù);
(2)若函數(shù)在上的值域是(),求實(shí)數(shù)的取值范圍;
(3)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com