10.某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào).已知從33~48這16個(gè)數(shù)中取的數(shù)是41,則在第1小組1~16中隨機(jī)抽到的數(shù)是(  )
A.5B.9C.11D.13

分析 求出樣本間隔,利用系統(tǒng)抽樣的定義進(jìn)行求解即可.

解答 解:樣本間隔為800÷50=16,
∵41=2×16+9,
∴在第1小組1~16中隨機(jī)抽到的數(shù)是9,
故選:B

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的應(yīng)用,根據(jù)條件求出樣本間隔是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,圓內(nèi)接四邊形ABCD的邊BC與AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上.
(1)若EF∥CD,證明:EF2=FA•FB;
(2)若EB=3EC,EA=2ED,求$\frac{DC}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足x2+y2=1,則x+$\sqrt{3}$y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足條件:對(duì)任意的n∈N*,點(diǎn)(1,n2)在函數(shù)f(x)=a1x+a2x2+a3x3+…+anxn(n∈N*)的圖象上,g(x)=$\frac{2x}{x+1}$,數(shù)列{bn}滿足b1=$\frac{2}{3}$,bn+1=g(bn),n∈N*,
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)試比較f($\frac{1}{2}$)與bn的大小(其中n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從M點(diǎn)測(cè)得A點(diǎn)的俯角∠NMA=30°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°;已知山高BC=200m,則山高M(jìn)N=( 。
A.300 mB.200$\sqrt{2}$ mC.200$\sqrt{3}$ mD.300$\sqrt{2}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,水平放置的三角形的直觀圖,A′C′∥y′軸,則原圖形中△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.任意三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.三棱錐S-ABC中,正三角形ABC的邊長(zhǎng)為$2\sqrt{3}$,SA=SB=2,二面角S-AB-C的平面角的大小為60°,則SC=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知在二項(xiàng)式($\sqrt{x}$-$\frac{a}{{\root{3}{x}}}$)n的展開式中,各項(xiàng)的二項(xiàng)式系數(shù)之和為32,且常數(shù)項(xiàng)為80,則n的值為5,實(shí)數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在實(shí)數(shù)集R上定義一種運(yùn)算“*”,對(duì)于任意給定的a、b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a、b∈R,a*b=b*a;
(2)對(duì)任意a、b∈R,a*0=a;
(3)對(duì)任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=x*$\frac{1}{x}$的性質(zhì),有如下說法:
①在(0,+∞)上函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞).
其中所有正確說法的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案