設(shè)數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為Sn,且S3=3a3,則公比q的值為


  1. A.
    -數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    1或-數(shù)學(xué)公式
  4. D.
    1或數(shù)學(xué)公式
C
分析:分兩種情況:當(dāng)q=1時(shí),得到此等比數(shù)列為常數(shù)列,各項(xiàng)都等于第一項(xiàng),已知的等式顯然成立;當(dāng)q=不等于1時(shí),利用等比數(shù)列的前n項(xiàng)和的公式及等比數(shù)列的通項(xiàng)公式公式化簡(jiǎn)已知的等式,得到關(guān)于q的方程,根據(jù)q不等于解出q的值,綜上,得到所有滿足題意的等比q的值.
解答:當(dāng)q=1時(shí),S3=a1+a2+a3=3a1=3a3,成立;
當(dāng)q≠1時(shí),得到S3=,a3=a1q2,又S3=3a3,
所以=3q2
化簡(jiǎn)得:2q2-q-1=0,即(q-1)(2q+1)=0,
由q≠1即q-1≠0,解得q=-
綜上,公比q的值為1或-
故選C.
點(diǎn)評(píng):此題考查學(xué)生掌握等比數(shù)列的性質(zhì),靈活運(yùn)用等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列{an}的一個(gè)子數(shù)列.設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無(wú)窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)t為何值時(shí),該數(shù)列為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱為數(shù)列{an}的一個(gè)子數(shù)列,設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1,公差為d(d≠0)的無(wú)窮等差數(shù)列.
(1)若a1,a2,a5為公比為q的等比數(shù)列,求公比q的值;
(2)若a1=1,d=2,請(qǐng)寫出一個(gè)數(shù)列{an}的無(wú)窮等比子數(shù)列{bn};
(3)若a1=7d,{cn}是數(shù)列{an}的一個(gè)無(wú)窮子數(shù)列,當(dāng)c1=a2,c2=a6時(shí),試判斷{cn}能否是{an}的無(wú)窮等比子數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,a1=
1
512
,q=2
,則a4與a10的等比中項(xiàng)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列{an}是等比數(shù)列,a1=
1
512
,q=2
,則a4與a10的等比中項(xiàng)為( 。
A.
1
4
B.
1
8
C.±
1
4
D.±
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省宿遷中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列{an}的一個(gè)子數(shù)列.設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無(wú)窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)t為何值時(shí),該數(shù)列為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案