10.已知角α的終邊與單位圓交于點(diǎn)$(-\frac{4}{5},\frac{3}{5})$,那么tanα=$-\frac{3}{4}$.

分析 利用任意角的三角函數(shù)的定義,求得tanα的值.

解答 解:∵角α的終邊與單位圓交于點(diǎn)$(-\frac{4}{5},\frac{3}{5})$,那么tanα=$\frac{\frac{3}{5}}{-\frac{4}{5}}$=-$\frac{3}{4}$,
故答案為:-$\frac{3}{4}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某高校組織自主招生考試,其有2 000名學(xué)生報(bào)名參加了筆試,成績(jī)均介于195分到275分之間,從中隨機(jī)抽取50名同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組[195,205),第二組[205,215),…,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.
(1)從這2 000名學(xué)生中,任取1人,求這個(gè)人的分?jǐn)?shù)在255~265之間的概率約是多少?
(2)求這2 000名學(xué)生的平均分?jǐn)?shù);
(3)若計(jì)劃按成績(jī)?nèi)? 000名學(xué)生進(jìn)入面試環(huán)節(jié),試估計(jì)應(yīng)將分?jǐn)?shù)線定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線的方程為x2-$\frac{y^2}{3}$=1,直線m的方程為x=$\frac{1}{2}$,過(guò)雙曲線的右焦點(diǎn)F(2,0)的直線l與雙曲線右支相交于P,Q,以PQ為直徑的圓與直線m相交于M,N,記劣弧MN的長(zhǎng)度為n,則$\frac{n}{{|{PQ}|}}$的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$
C.$\frac{π}{2}$D.與直線l的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知全集Y={x|x≤4},集合A=(-2,3),集合B=(-3,2)求
(1)(∁UA)∪B
(2)A∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=ax2-x+1,若命題:存在x1,x2∈[1,2],使$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0為假命題,則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{4}$]C.(-∞,0)∪($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=2x,x<1的值域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)等比數(shù)列{an}的前項(xiàng)n和Sn,a2=$\frac{1}{8}$,且S1+$\frac{1}{16}$,S2,S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=anbn,若對(duì)任意n∈N+,不等式c1+c2+…+cn≥$\frac{1}{2}$λ+2Sn-1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.拋物線C:y2=-8x上一點(diǎn)(m,2)到其焦點(diǎn)的距離為( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若數(shù)列{an}與{bn}滿足${b_{n+1}}{a_n}+{b_n}{a_{n+1}}={({-1})^n}+1,{b_n}=\frac{{3+{{({-1})}^{n-1}}}}{2},n∈{N^*}$,且a1=2,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S63=( 。
A.560B.527C.2015D.630

查看答案和解析>>

同步練習(xí)冊(cè)答案