【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )
(1)是的極大值點(diǎn) ;(2)函數(shù)有且只有1個(gè)零點(diǎn);(3)存在正實(shí)數(shù),使得恒成立 ;(4)對(duì)任意兩個(gè)正實(shí)數(shù),且,若,則
A. B. C. D.
【答案】B
【解析】
依次判斷各個(gè)選項(xiàng):(1)利用導(dǎo)數(shù)與極值的關(guān)系可知是的極小值點(diǎn),則(1)錯(cuò)誤;(2)利用導(dǎo)數(shù)研究的單調(diào)性,結(jié)合零點(diǎn)存在定理判斷可知(2)正確;(3)采用分離變量的方式,通過(guò)求解的單調(diào)性和極限,可判斷出,則(3)錯(cuò)誤;(4)構(gòu)造函數(shù),通過(guò)導(dǎo)數(shù)可求得,從而可確定時(shí),,從而證得結(jié)論,知(4)正確.
(1)
當(dāng)時(shí),,此時(shí)單調(diào)遞減
當(dāng)時(shí),,此時(shí)單調(diào)遞增
可知是的極小值點(diǎn),可知(1)錯(cuò)誤
(2)
,即在上單調(diào)遞減
又;
則,使得
由函數(shù)單調(diào)性可知有且只有個(gè)零點(diǎn),可知(2)正確
(3)若在上恒成立,則
令,則
令,則
時(shí),;時(shí),
即在上單調(diào)遞減
又時(shí),
不存在正實(shí)數(shù),使得恒成立,可知(3)錯(cuò)誤
(4)由(1)可知,在上單調(diào)遞減;在上單調(diào)遞增
令,
則
,即在上單調(diào)遞減
即
,令,由,即
,可知(4)正確
綜上所述,說(shuō)法正確的為:(2)(4)
本題正確選項(xiàng):
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線截圓所得的弦長(zhǎng)為.直線的方程為.
(1)求圓的方程;
(2)若直線過(guò)定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有兩個(gè)命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個(gè)命題中有且只有一個(gè)是真命題,則m的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的零點(diǎn);
(2)令,在時(shí),求函數(shù)的單調(diào)區(qū)間:
(3)在(2)條件下,存在實(shí)數(shù),使得函數(shù)有三個(gè)零點(diǎn),求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有限集,如果中元素滿(mǎn)足,就稱(chēng)為“復(fù)活集”.
(1)判斷集合是否為“復(fù)活集”,并說(shuō)明理由;
(2)若,,且是“復(fù)活集”,求的取值范圍;
(3)若,求證:“復(fù)活集”有且只有一個(gè),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x+1|—|x-2|的最大值為a.
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最大值為a;當(dāng) p,q,r是正實(shí)數(shù),且滿(mǎn)足p+q+r=a時(shí),求證:p2+q2+r2≥3。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,向量,設(shè)函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),其中常數(shù).
(1)若,求的值域;
(2)將函數(shù)的圖象向左平移個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)的圖象,用五點(diǎn)法作出函數(shù)在區(qū)間上的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com