△ABC的邊BC在平面α內(nèi),Aα,平面ABC與平面α所成的銳二面角為θ,AD⊥α,則下列結論中正確的是(    )

A.S△ABC=S△DBC·cosθ                       B.S△DBC=S△ABC·cosθ

C.S△ABC=S△DBC·sinθ                       D.S△DBC=S△ABC·sinθ

答案:B

解析:過A作AE⊥BC,連結DE,由三垂線定理知DE⊥BC,則∠AED=θ,S△ABC=BC·AE,S△BDC=BC·DE,又AEcosθ=DE,∴S△DBC=S△ABC·cosθ.故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若∠B=60°,O為△ABC的外心,點P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,則邊AC上的高h的最大值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省嘉興市高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

我們把底面是正三角形,頂點在底面的射影是正三角形中心的三棱錐稱為正三棱錐、現(xiàn)有一正三棱錐P-ABC放置在平面上,已知它的底面邊長為2,高h,邊BC在平面上轉動,若某個時刻它在平面上的射影是等腰直角三角形,則h的取值范圍是( )

A.(0,]
B.(0,]
C.(0,]∪[,1]
D.(0,]∪(,1)

查看答案和解析>>

同步練習冊答案