設(shè)點(diǎn)是以為左、右焦點(diǎn)的雙曲線左支上一點(diǎn),且滿足,則此雙曲線的離心率為(   )
A.B.C.D.
D

試題分析:設(shè),
點(diǎn)評(píng):求圓錐曲線的離心率是常見題型,常用方法:①直接利用公式;②利用變形公式:(橢圓)和(雙曲線)③根據(jù)條件列出關(guān)于a、b、c的關(guān)系式,兩邊同除以a,利用方程的思想,解出。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知為坐標(biāo)原點(diǎn),點(diǎn)分別在軸上運(yùn)動(dòng),且=8,動(dòng)點(diǎn)滿足 =,設(shè)點(diǎn)的軌跡為曲線,定點(diǎn)為直線交曲線于另外一點(diǎn)
(1)求曲線的方程;
(2)求 面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個(gè)點(diǎn)到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線:的焦點(diǎn)為,、是拋物線上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),拋物線在點(diǎn)、處的切線分別為、,且,相交于點(diǎn).

(1) 求點(diǎn)的縱坐標(biāo); 
(2) 證明:、三點(diǎn)共線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線被曲線截得的弦長為           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的一個(gè)頂點(diǎn)為,離心率為.直線與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)△AMN得面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的兩焦點(diǎn)為,過軸的垂線交雙曲線于兩點(diǎn),若內(nèi)切圓的半徑為,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)過點(diǎn)作直線與拋物線相交于兩點(diǎn),圓

(1)若拋物線在點(diǎn)處的切線恰好與圓相切,求直線的方程;
(2)過點(diǎn)分別作圓的切線,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)圓經(jīng)過定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案