10.從2007名學(xué)生中選取50名參加全國(guó)數(shù)學(xué)聯(lián)賽,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2007人中剔除7人,剩下的2000人再按系統(tǒng)抽樣的方法抽取,則每人入選的可能性( 。
A.都相等,且為$\frac{50}{2007}$B.不全相等
C.均不相等D.都相等,且為$\frac{1}{40}$

分析 先用簡(jiǎn)單隨機(jī)抽樣的方法剔除,剩下的再按系統(tǒng)抽樣的抽取,故可得結(jié)論.

解答 解:根據(jù)題意,先用簡(jiǎn)單隨機(jī)抽樣的方法從2007人中剔除7人,
則剩下的再按系統(tǒng)抽樣的抽取時(shí),每人入選的概率為$\frac{2000}{2007}×\frac{50}{2000}=\frac{50}{2007}$,
故每人入選的概率相等
故選:A.

點(diǎn)評(píng) 本題考查等可能事件的概率,考查抽樣方法,明確每個(gè)個(gè)體的等可能性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對(duì)任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為( 。
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如果a1-2x>ax+7(a>0,且a≠1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點(diǎn),則實(shí)數(shù)m的取值范圍是  (-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給下列五個(gè)命題:
①若方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④設(shè)函數(shù)y=f(x)的定義域?yàn)镽,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對(duì)稱;
⑤一條曲線$y=\left\{\begin{array}{l}3-{x^2}(x∈[-\sqrt{3},\sqrt{3}])\\{x^2}-3(x∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞))\end{array}\right.$和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中正確命題的序號(hào)為①⑤(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.兩人約好12:00--13:00見面,先到的人等后到的人不超過(guò)15分鐘,超過(guò)15分鐘,先到的人離去,則兩人相遇的概率是( 。
A.$\frac{2}{15}$B.$\frac{7}{16}$C.$\frac{1}{2}$D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$y=\frac{{\sqrt{x+1}}}{lg(2-x)}$的定義域是( 。
A.[-1,2)B.(1,2)C.[-1,1)∪(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lg(x2-mx-m).
(1)若m=1,求函數(shù)f(x)的定義域;
(2)若f(x)在(1,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$m=a+\frac{1}{a-2}({a>2})$,n=4-x2,則( 。
A.m>nB.m<nC.m=nD.m≥n

查看答案和解析>>

同步練習(xí)冊(cè)答案