設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足數(shù)學(xué)公式,數(shù)學(xué)公式,則數(shù)學(xué)公式


  1. A.
    最小值為數(shù)學(xué)公式
  2. B.
    最大值為數(shù)學(xué)公式
  3. C.
    最小值為數(shù)學(xué)公式
  4. D.
    最大值為數(shù)學(xué)公式
D
分析:根據(jù)向量關(guān)系,確定DP:BC=,△ADP的高:△ABC的高=AD:AB=,從而可求面積之比,再利用基本不等式,即可得到結(jié)論.
解答:∵

∴DP:BC=

∴△ADP的高:△ABC的高=AD:AB=
=×==
∵λ>0,∴,當(dāng)且僅當(dāng)λ=1時(shí),取等號(hào)
∴當(dāng)λ=1時(shí),取得最大值=
故選D.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查三角形的面積,考查基本不等式的運(yùn)用,解題的關(guān)鍵是確定面積之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鷹潭一模)設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足
AD
=
λ+1
λ2+
2
λ+1
AB
,
AP
=
AD
+
λ
λ+1
BC
,λ>0
,則
S△APD
S△ABC
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足
AD
=
2
3
AB
,
AP
=
AD
+
1
4
BC
,則
SAPD
SABC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D為△ABC的邊AB的中點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足,
AP
=
AD
+
2
5
BC
,則
S△APD
S△ABC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•雙流縣三模)設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足
AD
=
3
4
AB
,
AP
=
AD
+
2
5
BC
,則
S△APD
S△ABC
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省吉安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足,則=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案