10.將10個三好學(xué)生的名額全部分配給高二段編號為1、2、3的三個班級,則每個班級分到的名額數(shù)不小于班級編號分法有15種.(用數(shù)字作答)

分析 根據(jù)題意,要求符合題意的放法,分兩步,①先在編號為2、3的三個班級中分別分配1、2個名額,編號為1的班級里不分配;②再將剩下的7個名額分配3個班級里,每個班級里至少一個;進而使用隔板法分析可得答案.

解答 解:根據(jù)題意,先在編號為2、3的2個班級中分別分配1、2個名額,編號為1的班級里不分配;
再將剩下的7個名額分配3個班級里,每個班級里至少一個,
分析可得,共C62=15種放法,即可得符合題目要求的放法共15種,
故答案為:15.

點評 本題考查組合的運用,是一道典型的題目,注意解題的特殊方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,$\frac{1}{12}$an=$\frac{1}{4}$an-1+$\frac{1}{3}$(n≥2),則{an}的通項公式為an=3n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合A={x|3x2-2x>0},集合B={x||x-1|<m},若B是A的子集,則實數(shù)m的取值范圍為(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線y=kx+3與圓x2+y2-6x-4y+5=0相交于M,N兩點,若|MN|=2$\sqrt{3}$,則k的值是(  )
A.2或-$\frac{1}{2}$B.-2或-$\frac{1}{2}$C.-2或$\frac{1}{2}$D.2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在R上的函數(shù)f(x)滿足f(x)=f(x-1)-f(x-2),且f(0)=3,則f(2013)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AA1=2AB=2AC,點D是BC的中點.
(I)求異面直線A1B與C1D所成角的余弦值.
(Ⅱ)求二面角D-AC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-xlnx,g(x)=ex-tx2+x,t∈R,其中e是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù) f(x)在點(1,f(1))處切線方程;
(Ⅱ)若g(x)≥f(x)對任意x∈(0,+∞)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知斜三棱柱ABC-A1B1C1中,側(cè)面A1B與側(cè)面A1C成60°,且側(cè)面A1B與側(cè)面A1C面積之比為8:5,若棱柱的側(cè)面積為60cm2,體積為15$\sqrt{3}$cm3,求側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是圓的內(nèi)接四邊形,BC=BD,BA的延長線交CD的延長線于點E,求證:AE是四邊形ABCD的外角∠DAF的平分線.

查看答案和解析>>

同步練習(xí)冊答案