19.袋中有大小,形狀相同的紅球,黑球各一個(gè),現(xiàn)有放回地隨機(jī)摸取3次,每次摸出一個(gè)球.若摸到紅球得2分,摸到黑球得1分,則3次摸球所得總分為5分的概率是( 。
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

分析 基本事件總數(shù)n=23=8,3次摸球所得總分為5分包含的基本事件個(gè)數(shù)m=${C}_{3}^{1}{C}_{2}^{2}$=3,由此能求出3次摸球所得總分為5分的概率.

解答 解:袋中有大小,形狀相同的紅球,黑球各一個(gè),
現(xiàn)有放回地隨機(jī)摸取3次,每次摸出一個(gè)球.
基本事件總數(shù)n=23=8,
摸到紅球得2分,摸到黑球得1分,
3次摸球所得總分為5分包含的基本事件個(gè)數(shù)m=${C}_{3}^{1}{C}_{2}^{2}$=3,
∴3次摸球所得總分為5分的概率p=$\frac{3}{8}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,2sinA=acosB,b=$\sqrt{5}$.
(1)若c=2,求sinC;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知α為第二象限角,sin(π+α)=-$\frac{1}{3}$,則tanα=( 。
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在直三棱柱ABC-A1B1C1中,AA1=AB=BC=2,$∠ABC=\frac{π}{2}$,E,F(xiàn)分別為棱AB,AC的中點(diǎn),則直線A1E和C1F的夾角余弦值為(  )
A.$\frac{{\sqrt{30}}}{10}$B.$\frac{{\sqrt{30}}}{6}$C.$\frac{{\sqrt{10}}}{6}$D.$\frac{{2\sqrt{30}}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)$f(x)=\sqrt{x}sinx$,則f'(π)=( 。
A.$\sqrt{π}$B.$\frac{{\sqrt{π}}}{2π}$C.$-\sqrt{π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.等差數(shù)列{an}中,a3+a4=12,S7=49.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.令bn=[lgan],求數(shù)列{bn}的前2000項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列集合中,不同于另外三個(gè)集合的是③.
①{x|x=1}   ②{y|(y-1)2=0}      ③{x=1}    ④{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{6}}{3}$,坐標(biāo)原點(diǎn)O到過點(diǎn)A(0,-b)和B(a,0)的直線的距離為$\frac{\sqrt{3}}{2}$.又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點(diǎn)C,D.且C,D兩點(diǎn)都在以A為圓心的同一個(gè)圓上.
(1)求橢圓的方程;
(2)當(dāng)k=$\frac{\sqrt{6}}{3}$時(shí),求m的值,以及此時(shí)△ACD面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)$y=cos({4x+\frac{π}{3}})$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案