【題目】【2017重慶二診】已知函數(shù),設(shè)關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
【答案】B
【解析】由已知, ,令,解得或,則函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,極大值,最小值.
綜上可考查方程的根的情況如下(附函數(shù)圖):
(1)當(dāng)或時,有唯一實根;
(2)當(dāng)時,有三個實根;
(3)當(dāng)或時,有兩個實根;
(4)當(dāng)時,無實根.
令,則由,得,
當(dāng)時,由,
符號情況(1),此時原方程有1個根,
由,而,符號情況(3),此時原方程有2個根,綜上得共有3個根;當(dāng)時,由,又,
符號情況(1)或(2),此時原方程有1個或三個根,
由,又,符號情況(3),此時原方程有兩個根,
綜上得共1個或3個根.
綜上所述, 的值為1或3.故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,為中點,為上的一點,.
(1)若平面,求證:.
(2)平面將棱柱分割為兩個幾何體,記上面一個幾何體的體積為,下面一個幾何體的體積為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉辦校園足球賽,組委會為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽 | 不喜歡看足球比賽 | 總計 | |
男 | |||
女 | |||
總計 |
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關(guān)?
(3)從女志愿者中抽取2人參加某場足球比賽服務(wù)工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
附:參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊長分別為a,b,c且滿足csinA= acosC,則sinA+sinB的最大值是( )
A.1
B.
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017河北唐山三!已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實數(shù)a的取值范圍是( )
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上的一個動點,弦分別過左右焦點,且當(dāng)線段的中點在軸上時, .
(1)求該橢圓的離心率;(2)設(shè),試判斷是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為16分)設(shè)A,B分別為橢圓的左、右頂點,橢圓的長軸長為,且點在該橢圓上.
(1)求橢圓的方程;
(2)設(shè)為直線上不同于點的任意一點,若直線與橢圓相交于異于的點,證明:△為鈍角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com