11.已知定義在R上的函數(shù)f(x)滿(mǎn)足f(1-x)+f(1+x)=2,且當(dāng)x>1時(shí),f(x)=$\frac{x}{{e}^{x-2}}$,則曲線y=f(x)在x=0處的切線方程是x+y=0.

分析 求出x<1時(shí)函數(shù)的解析式,再求出切線斜率,即可求出切線方程.

解答 解:∵定義在R上的函數(shù)f(x)滿(mǎn)足f(1-x)+f(1+x)=2,
∴函數(shù)f(x)關(guān)于(1,1)對(duì)稱(chēng),
x<1時(shí),取點(diǎn)(x,y),關(guān)于(1,1)的對(duì)稱(chēng)點(diǎn)(2-x,2-y)代入當(dāng)x>1時(shí),f(x)=$\frac{x}{{e}^{x-2}}$,可得2-y=$\frac{2-x}{{e}^{-x}}$,
∴y=2-$\frac{2-x}{{e}^{-x}}$,
∴y′=$\frac{x-1}{{e}^{-x}}$,
x=0時(shí),y′=-1,y=0,
∴曲線y=f(x)在x=0處的切線方程是y-0=-(x-0),即x+y=0,
故答案為:x+y=0.

點(diǎn)評(píng) 本題考查函數(shù)解析式的求解,考查導(dǎo)數(shù)的幾何意義,求出函數(shù)的解析式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某校高一(1)班共有學(xué)生50人,據(jù)統(tǒng)計(jì)原來(lái)每人每年用于購(gòu)買(mǎi)飲料的平均支出是a元.經(jīng)測(cè)算和市場(chǎng)調(diào)查,若該班學(xué)生集體改飲某品牌的桶裝純凈水,則年總費(fèi)用由兩部分組成:一部分是購(gòu)買(mǎi)純凈水的費(fèi)用,另一部分是其他費(fèi)用780元,其中純凈水的銷(xiāo)售價(jià)x(元/桶)與年購(gòu)買(mǎi)總量y(桶)之間滿(mǎn)足如圖所示的關(guān)系.
(1)求x與y的函數(shù)關(guān)系;
(2)當(dāng)a為120時(shí),若該班每年需要純凈水380桶,請(qǐng)你根據(jù)提供的信息分析一下:該班學(xué)生集體改飲桶裝純凈水與個(gè)人買(mǎi)飲料相比,哪一種花錢(qián)更少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某公司有60萬(wàn)元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對(duì)項(xiàng)目甲的投資不小于對(duì)項(xiàng)目乙投資的$\frac{2}{3}$倍,且對(duì)每個(gè)項(xiàng)目的投資不能低于5萬(wàn)元.對(duì)項(xiàng)目甲每投資1萬(wàn)元可獲得0.4萬(wàn)元的利潤(rùn),對(duì)項(xiàng)目乙每投資1萬(wàn)元可獲得0.6萬(wàn)元的利潤(rùn).該公司如何正確規(guī)劃投資,才能在這兩個(gè)項(xiàng)目上共獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿(mǎn)足a1+a5=12,S4=20;數(shù)列{bn}滿(mǎn)足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+a)-x有且只有一個(gè)零點(diǎn),其中a>0.
(1)求a的值;
(2)設(shè)函數(shù)h(x)=f(x)+x,證明:對(duì)?x1,x2∈(-1,+∞)(x1≠x2),不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$|{\overrightarrow a}$|=2,$|{\overrightarrow b}$|=6,則2$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓的一個(gè)焦點(diǎn)與兩頂點(diǎn)為等邊三角形的一個(gè)頂點(diǎn),則該橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的( 。
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.定義在R上的奇函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f(-1)=0,當(dāng)x>0時(shí),xf'(x)-f(x)<0則不等式f(x)<0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知三個(gè)點(diǎn)A(0,0),B(2,0),C(4,2),則△ABC的外心的縱坐標(biāo)是( 。
A.$\frac{3}{2}$B.3C.$\frac{5}{2}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案