如圖1,,是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋上某點(diǎn)分別修建與,平行的棧橋,且以、為邊建一個跨越水面的三角形觀光平臺.建立如圖2所示的直角坐標(biāo)系,測得線段的方程是,曲線段的方程是,設(shè)點(diǎn)的坐標(biāo)為,記.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度)

(1)求的取值范圍;
(2)試寫出三角形觀光平臺面積關(guān)于的函數(shù)解析式,并求出該面積的最小值

(1)
(2)當(dāng)時,三角形觀光平臺的面積取最小值為225平方米.

解析試題分析:解:(1)由題意,得在線段CD:上,即,
又因?yàn)檫^點(diǎn)M要分別修建與OA、OB平行的棧橋MG、MK
所以;.                         2分.
;         4分
所以的取值范圍是..                  6分
(2)由題意,得,..                8分
所以 
,               10分
因?yàn)楹瘮?shù)單調(diào)遞減,         12分
所以當(dāng)時,三角形觀光平臺的面積取最小值為225平方米.             14分
考點(diǎn):函數(shù)模型的運(yùn)用
點(diǎn)評:主要是考查了分析題意,得到解析式,結(jié)合函數(shù)性質(zhì)求解最值,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)化簡
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

作為紹興市2013年5.1勞動節(jié)系列活動之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個矩形設(shè)計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長為米(如圖所示)

(1)試將表示為的函數(shù);
(2)問應(yīng)該如何設(shè)計矩形地塊的邊長,使花圃占地面積取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)有兩個零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關(guān)于原點(diǎn)對稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元(1≤a≤3)的管理費(fèi),預(yù)計當(dāng)每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最
大值M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)若存在,對任意,總存在唯一,使得成立.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

森林失火了,火正以的速度順風(fēng)蔓延,消防站接到報警后立即派消防員前去,在失火后到達(dá)現(xiàn)場開始救火,已知消防隊(duì)在現(xiàn)場每人每分鐘平均可滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用每人每分鐘元,另附加每次救火所損耗的車輛、器械和裝備等費(fèi)用平均每人元,而每燒毀森林的損失費(fèi)為元,設(shè)消防隊(duì)派了名消防員前去救火,從到達(dá)現(xiàn)場開始救火到火全部撲滅共耗時
(1)求出的關(guān)系式;
(2)問為何值時,才能使總損失最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷售額(單位:萬元)與日產(chǎn)量的函數(shù)關(guān)系式

已知每日的利潤,且當(dāng)時,
(1)求的值;
(2)當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:
(1)          
(2)

查看答案和解析>>

同步練習(xí)冊答案