20.為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:[20,25],[25,30],[30,35],[35,40],[40,45].
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[35,40]歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

分析 (Ⅰ)根據(jù)小矩形的面積等于頻率,除[35,40)外的頻率和為0.70,即可得出.
(Ⅱ)用分層抽樣的方法,從中選取10名,則其中年齡“低于35歲”的人有6名,“年齡不低于35歲”的人有4名,故X的可能取值為0,1,2,3.利用超幾何分布列的計(jì)算公式及其數(shù)學(xué)期望計(jì)算公式即可得出.

解答 解:(Ⅰ)∵小矩形的面積等于頻率,∴除[35,40)外的頻率和為0.70,
∴$x=\frac{1-0.70}{5}=0.06$
500名志愿者中,年齡在[35,40)歲的人數(shù)為0.06×5×500=150(人)
(Ⅱ)用分層抽樣的方法,從中選取10名,則其中年齡“低于35歲”的人有6名,
“年齡不低于35歲”的人有4名,故X的可能取值為0,1,2,3.$P({X=0})=\frac{C_4^3}{{C_{10}^3}}=\frac{1}{30}$,$P({X=1})=\frac{C_6^1C_4^2}{{C_{10}^3}}=\frac{3}{10}$,$P({X=2})=\frac{C_6^2C_4^1}{{C_{10}^3}}=\frac{1}{2}$,$P({X=3})=\frac{C_6^3}{{C_{10}^3}}=\frac{1}{6}$.
故X的分布列為

X0123
P$\frac{1}{30}$$\frac{3}{10}$$\frac{1}{2}$$\frac{1}{6}$
所以$EX=0×\frac{1}{30}+1×\frac{3}{10}+2×\frac{1}{2}+3×\frac{1}{6}=\frac{9}{5}$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的性質(zhì)、分層抽樣的方法、超幾何分布列的計(jì)算公式及其數(shù)學(xué)期望計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知四棱錐P-ABCD的正視圖1是一個(gè)底邊長(zhǎng)為4、腰長(zhǎng)為3的等腰三角形,圖2、圖53分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“對(duì)任意的x∈R,x2-2x+1≥0”的否定是( 。
A.不存在x0∈R,${x_0}^2-2{x_0}+1≥0$B.存在x0∈R,${x_0}^2-2{x_0}+1≤0$
C.存在x0∈R,${x_0}^2-2{x_0}+1<0$D.對(duì)任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(ax-1)ex,a∈R.
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)m>n>0時(shí),證明:men+n<nem+m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+x2-ax+2(a∈R)有兩個(gè)不同的零點(diǎn)x1,x2
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:x1•x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的定義域?yàn)镽,導(dǎo)函數(shù)f'(x)的圖象如圖所示,則函數(shù)f(x)( 。
A.無極大值點(diǎn),有四個(gè)極小值點(diǎn)B.有三個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
C.有兩個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)D.有四個(gè)極大值點(diǎn),無極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<1}\\{alnx,x≥1}\end{array}\right.$
(1)當(dāng)a≥1時(shí),求f(x)在[0,e](e為自然對(duì)數(shù)的底數(shù))上的最大值;
(2)對(duì)任意的正實(shí)數(shù)a,問:曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ(O為坐標(biāo)原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定圓M:(x+$\sqrt{3}$)2+y2=16,動(dòng)圓N過點(diǎn)F($\sqrt{3}$,0)且與圓M相切,記圓心N的軌跡為C直線l過點(diǎn)E(-1,0)且與C于A,B
(Ⅰ)求軌跡C方程;
(Ⅱ)△AOB是否存在最大值,若存在,求出△AOB的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的( 。
A.a<b<cB.b<a<cC.c<b<aD.a<c<b

查看答案和解析>>

同步練習(xí)冊(cè)答案