設(shè)是橢圓E: 的左右焦點(diǎn),P在直線上一點(diǎn),是底角為的等腰三角形,則橢圓E的離心率為(   )

 A.     B.      C.      D.

 

【答案】

B

【解析】

試題分析:設(shè)與x軸交于A點(diǎn),由已知可得

考點(diǎn):橢圓離心率

點(diǎn)評(píng):本題結(jié)合圖形可容易得到關(guān)系式

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓E:
x2
a2
+2y2=1
a>
2
2
)的左右焦點(diǎn),過(guò)F1的直線l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列
(1)求|AB|;
(2)若直線l的斜率為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2與B分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點(diǎn)與上定點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:
1
a2
+
1
b2
=1

(2)P是橢圓E上異于A1、A2 的一點(diǎn),直線PA1、PA2的斜率之積為-
1
3
,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且
OM
ON
=0
,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•青島一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右兩焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓C上的一點(diǎn),且在x軸的上方,H是PF1上一點(diǎn),若
PF2
F1F2
=0,
OH
PF1
=0,|
OH
|=λ|
OF1
|
,λ∈[
1
3
1
2
]
(其中O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C離心率e的最大值;
(Ⅱ)如果離心率e。á瘢┲星蟮玫淖畲笾担阎猙2=2,點(diǎn)M(-1,0),設(shè)Q是橢圓C上的一點(diǎn),過(guò)Q、M兩點(diǎn)的直線l交y軸于點(diǎn)N,若
NQ
=2
QM
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省期末題 題型:解答題

設(shè)、A2與B分別是橢圓E:的左右頂點(diǎn)與上定點(diǎn),直線A2B與
圓C:x2+y2=1相切.
(1)求證:;
(2)P是橢圓E上異于、A2 的一點(diǎn),直線P、PA2的斜率之積為﹣,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案