在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2,則函數(shù)f(x)=(1⊕x)+(2⊕2x),x∈[-2,2]的最大值為(  )
A、3B、6C、12D、20
考點(diǎn):函數(shù)的最值及其幾何意義
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題中給出的定義,分當(dāng)-2≤x≤1時(shí)和1<x≤2時(shí)兩種情況討論,從而確定函數(shù)的解析式.結(jié)合函數(shù)的單調(diào)性分別算出最大值,再加以比較即可得到函數(shù)f(x)的最大值.
解答: 解析:依題意,1⊕x=
1,x≤1
x2,x>1
,2⊕2x=
2,x≤1
22x,x>1
,
∴f(x)=
3,x≤1
x2+22x

當(dāng)x∈[-2,1]時(shí),f(x)=1+2=3;
當(dāng)x∈(1,2]時(shí),f(x)=x2+22x=x2+4x,
所以f(x)max=f(2)=20.
故選:D.
點(diǎn)評:本題給出新定義,求函數(shù)f(x)的最大值.著重考查了對新定義的理解和基本初等函數(shù)的性質(zhì),考查了分類討論的數(shù)學(xué)思想和分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin(π-α)=-
5
3
且α∈(π,
2
),則sin(
π
2
+
α
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=
1
2
+
2
22
+
3
23
+
4
24
+…+
n
2n
,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
2
x,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知當(dāng)x>1時(shí),有f(3x)=3f(x);當(dāng)1<x<3時(shí),f(x)=3-x,記f(3n+2)=kn,則
n
i=1
ki=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2+1<2x;命題q:若mx2-mx-1<0恒成立,則-4<m≤0,那么( 。
A、“¬p”是假命題
B、“q”是假命題
C、“p∧q”為真命題
D、“p∨q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2,0<x≤2
5,x=0
-x2,-2≤x<0

(1)求函數(shù)f(x)的最值;
(2)寫出函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
21
01
,向量
b
=
10
2
.求向量
a
,使得A2a=b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
x+y-4≤0
x-y≥0
,則x2+y2+4x+6y+14的最大值為(  )
A、42
B、
46
C、
42
D、46

查看答案和解析>>

同步練習(xí)冊答案