6.在區(qū)間[0,π]上隨機(jī)取一個數(shù)x,使$-\frac{{\sqrt{3}}}{2}<cosx<\frac{{\sqrt{3}}}{2}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 先求出不等式$-\frac{{\sqrt{3}}}{2}<cosx<\frac{{\sqrt{3}}}{2}$對應(yīng)的解集,結(jié)合幾何概型的概率公式進(jìn)行求解即可.

解答 解:∵0≤x≤π,$-\frac{{\sqrt{3}}}{2}<cosx<\frac{{\sqrt{3}}}{2}$,
∴$\frac{π}{6}$≤x≤$\frac{5π}{6}$π,區(qū)間長度為$\frac{2}{3}π$,
則對應(yīng)的概率P=$\frac{\frac{2}{3}π}{π}$=$\frac{2}{3}$,
故選:B.

點評 本題主要考查幾何概型的概率的計算,根據(jù)條件求出不等式等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=|x-3|+1在區(qū)間[0,9]上的值域是( 。
A.[4,7]B.[0,7]C.[1,7]D.[2,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)對一切x,y∈R都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,設(shè)P:當(dāng)$0≤x≤\frac{3}{4}$時,不等式f(x)+3<2x+a恒成立,Q:當(dāng)x∈[-2,2]時,g(x)=f(x)-ax是單調(diào)函數(shù),如果記使P成立的實數(shù)a的取值的集合為A,使Q成立的實數(shù)a的取值的集合為B,求A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC,
(1)求證:AC⊥平面DEF;
(2)求平面DEF與平面ABD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=lg$\frac{1+ax}{1-2x}({a>0})$是奇函數(shù),則函數(shù)$g(x)={log_{\frac{1}{a}}}({{x^2}-6x+5})$的單調(diào)遞減區(qū)間是(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x-2sinx.
(Ⅰ)求函數(shù)f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的最值;
(Ⅱ)若存在$x∈({0,\frac{π}{2}})$,使得不等式f(x)<ax成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.11月11日在某購物網(wǎng)站消費(fèi)不超過10000元的2000名網(wǎng)購者中有女士1100名,男士900名.該網(wǎng)站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購者中抽取200名進(jìn)行分析得到下表(消費(fèi)金額:元)
女士消費(fèi)情況:
消費(fèi)金額(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人數(shù)1025      35     35x
男士消費(fèi)情況:
消費(fèi)金額(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人數(shù)1530      25y3
(Ⅰ)計算x,y的值,在抽出的200名且消費(fèi)金額在[8000,10000](單位:元)的網(wǎng)購者中隨機(jī)選出2名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者都是男士的概率;
(Ⅱ)若消費(fèi)金額不低于6000元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于6000元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上數(shù)據(jù)填寫下面2×2列連表,并回答能否在犯錯誤率不超過0.05的前提下,認(rèn)為“是否為網(wǎng)購達(dá)人與性別有關(guān)”?
女士男士總計
網(wǎng)購達(dá)人
非網(wǎng)購達(dá)人
總計
附:
P(K2≥k00.100.050.0250.010.005
k02.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點M(1,1)到拋物線y=ax2準(zhǔn)線的距離為3,則a的值為( 。
A.$\frac{1}{8}$B.8C.$\frac{1}{8}或-\frac{1}{16}$D.$\frac{1}{8}$或-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義集合運(yùn)算“*”:A×B={(x,y)|x∈A,y∈B},稱為A,B兩個集合的“卡氏積”.若A={x|x2-2|x|≤0,x∈N},b={1,2,3},則(a×b)∩(b×a)={(1,1),(1,2),(2,1),(2,2)}.

查看答案和解析>>

同步練習(xí)冊答案