【題目】設(shè),當(dāng)時(shí),恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題意,分析可得函數(shù)f(x)為奇函數(shù)且在R為增函數(shù),進(jìn)而f(msinθ)+f(1﹣m)>0恒成立可以轉(zhuǎn)化為msinθ>m﹣1,對(duì)θ的值分情況討論,求出m的取值范圍,綜合即可得答案.
解:根據(jù)題意,f(x)=2x﹣sinx,
有f(﹣x)=2(﹣x)﹣sin(﹣x)=﹣(2x﹣sinx)=﹣f(x),則函數(shù)f(x)為奇函數(shù),
又由f(x)=2x﹣sinx,則f′(x)=2﹣cosx>0,則函數(shù)f(x)在R上為增函數(shù),
若f(msinθ)+f(1﹣m)>0恒成立,則有f(msinθ)>﹣f(1﹣m)
即f(msinθ)>f(m﹣1)恒成立,
而函數(shù)f(x)為增函數(shù),
則有msinθ>m﹣1,
若θ,則sinθ=1,此時(shí)msinθ>m﹣1恒成立;
若0時(shí),此時(shí)msinθ>m﹣1轉(zhuǎn)化為m,分析可得m<1,
綜合可得:m的取值范圍是(﹣∞,1);
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角中,若,且能蓋住的最小圓的面積為,求周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)和印度是當(dāng)今世界上兩個(gè)發(fā)展最快且是最大的發(fā)展中國(guó)家,為了解兩國(guó)經(jīng)濟(jì)的發(fā)展情況,收集了2008年至2017年兩國(guó)GDP年度增長(zhǎng)率,并繪制成如圖折線圖,則下列結(jié)論不正確的是( )
A.2010年,兩國(guó)GDP年度增長(zhǎng)率均為最大
B.2014年,兩國(guó)GDP年度增長(zhǎng)率幾乎相等
C.這十年內(nèi),中國(guó)比印度的發(fā)展更為平穩(wěn)一些
D.2015年起,印度GDP年度增長(zhǎng)率均比中國(guó)大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)“千村百鎮(zhèn)計(jì)劃”,年月某新能源公司開展“電動(dòng)莆田 綠色出行”活動(dòng),首批投放臺(tái)型新能源車到莆田多個(gè)村鎮(zhèn),供當(dāng)?shù)卮迕衩赓M(fèi)試用三個(gè)月.試用到期后,為了解男女試用者對(duì)型新能源車性能的評(píng)價(jià)情況,該公司要求每位試用者填寫一份性能綜合評(píng)分表(滿分為分).最后該公司共收回份評(píng)分表,現(xiàn)從中隨機(jī)抽取份(其中男、女的評(píng)分表各份)作為樣本,經(jīng)統(tǒng)計(jì)得到如下莖葉圖:
(1)求個(gè)樣本數(shù)據(jù)的中位數(shù);
(2)已知個(gè)樣本數(shù)據(jù)的平均數(shù),記與的最大值為.該公司規(guī)定樣本中試用者的“認(rèn)定類型”:評(píng)分不小于的為“滿意型”,評(píng)分小于的為“需改進(jìn)型”.
①請(qǐng)根據(jù)個(gè)樣本數(shù)據(jù),完成下面列聯(lián)表:
根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“認(rèn)定類型”與性別有關(guān)?
②為做好車輛改進(jìn)工作,公司先從樣本“需改進(jìn)型”的試用者按性別用分層抽樣的方法,從中抽取8人進(jìn)行回訪,根據(jù)回訪意見改進(jìn)車輛后,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行二次試用,記這3人中男性人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1,a∈R.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)性;
(2)設(shè)a≤0,求證:x≥0時(shí),f(x)≥x2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點(diǎn),求三條街道的總長(zhǎng)度;
(2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面是邊長(zhǎng)為的正三角形,點(diǎn)在底面上的射影恰是的中點(diǎn),側(cè)棱和底面成角.
(1)若為側(cè)棱上一點(diǎn),當(dāng)為何值時(shí),;
(2)求二面角的余弦值大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】至年底,我國(guó)發(fā)明專利申請(qǐng)量已經(jīng)連續(xù)年位居世界首位,下表是我國(guó)年至年發(fā)明專利申請(qǐng)量以及相關(guān)數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問這幾年中哪一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測(cè)我國(guó)發(fā)明專利申請(qǐng)量突破萬件的年份.
參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)分別為,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com