已知f(x)=logax,g(x)=loga(2-x),(a>0,a≠1),
(1)若f(4)<2,求a的取值范圍;
(2)若a>1,設(shè)h(x)=f(x)+g(x),求h(x)的定義域和值域.
考點(diǎn):函數(shù)的值域,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(4)<2得loga4<2,討論a>1、0<a<1時(shí),a的取值范圍;
(2)由對(duì)數(shù)的真數(shù)大于0求出x的取值范圍,由函數(shù)對(duì)應(yīng)關(guān)系得出h(x)的取值范圍,即得定義域和值域.
解答: 解:(1)由f(4)<2得,loga4<2;
若a>1,則a2>4,解得,a>2;(3分)
若0<a<1,則a2<4,解得,0<a<1;(6分)
綜上所述:a>2或0<a<1;(7分)
(2)h(x)=logax+loga(2-x)=loga(-x2+2x),(a>1);
x>0
2-x>0
,解得,0<x<2;(10分)
又∵-x2+2x∈(0,1];
∴h(x)∈(-∞,0];(13分)
∴h(x)的定義域?yàn)椋?,2),值域?yàn)椋?∞,0].(14分)
點(diǎn)評(píng):本題考查了函數(shù)的定義域與值域的問(wèn)題,解題時(shí)應(yīng)根據(jù)函數(shù)的解析式求出函數(shù)的定義域和值域,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,且4a+b=3ab,則a+4b的最小值是( 。
A、8
B、
25
3
C、9
D、
28
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)點(diǎn)M(-1,2),且傾斜角為
π
6
,則直線l的一個(gè)參數(shù)方程為(其中t為參數(shù))( 。
A、
x=-1+
1
2
t
y=2+
3
2
t
B、
x=-1+
3
2
t
y=2+
1
2
t
C、
x=2+
1
2
t
y=-1+
3
2
t
D、
x=2+
3
2
t
y=-1+
1
2
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一機(jī)器可以按各種不同的速度運(yùn)轉(zhuǎn),其生產(chǎn)物件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)物件的多少隨機(jī)器運(yùn)轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位轉(zhuǎn)/秒),用y表示每小時(shí)生產(chǎn)的有缺點(diǎn)物件個(gè)數(shù),現(xiàn)觀測(cè)得到(x,y)的4組觀測(cè)值為(8,5),(12,8),(14,9),(16,11).
(1)假定y與x之間有線性相關(guān)關(guān)系,求y對(duì)x的回歸直線方程.
(2)若實(shí)際生產(chǎn)中所容許的每小時(shí)最大有缺點(diǎn)物件數(shù)為10,則機(jī)器的速度不得超過(guò)多少轉(zhuǎn)/秒?(精確到1轉(zhuǎn)/秒)
(參考公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

泉州某魚(yú)苗養(yǎng)殖戶,由于受養(yǎng)殖技術(shù)水平和環(huán)境等因素的制約,會(huì)出現(xiàn)一些魚(yú)苗的死亡,根據(jù)以往經(jīng)驗(yàn),魚(yú)苗的死亡數(shù)p(萬(wàn)條)與月養(yǎng)殖數(shù)x(萬(wàn)條)之間滿足關(guān)系:P=
x2
6
,(1≤x≤4)
x+
3
x
-
25
12
,(x≥4)
,已知每成活1萬(wàn)條魚(yú)苗可以盈利2萬(wàn)元,但每死亡1萬(wàn)條魚(yú)苗講虧損1萬(wàn)元.
(Ⅰ)試將該養(yǎng)殖戶每月養(yǎng)殖魚(yú)苗所獲得的利潤(rùn)T(萬(wàn)元)表示為月養(yǎng)殖量x(萬(wàn)條的函數(shù));
(Ⅱ)該養(yǎng)殖戶魚(yú)苗的月養(yǎng)殖量是多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)=盈利-虧損)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2xlnx.
(1)求單調(diào)區(qū)間和最小值;
(2)若對(duì)x≥1,都有函數(shù)f(x)的圖象總在直線y=ax-2的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=a-
b
4x+1
的圖象過(guò)點(diǎn)(
1
2
,
1
3
)和(1,
3
5
).
(1)求常數(shù)a,b的值;
(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(3)解不等式f(2x-3)+f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一項(xiàng)農(nóng)業(yè)試驗(yàn)中,為了比較兩種肥料對(duì)于某種果樹(shù)的施肥效果,隨機(jī)選取了施用這兩種肥料的果樹(shù)各10棵的產(chǎn)量(單位:kg):
肥料A:29,34,35,37,48,42,46,44,49,53;
肥料B:30,34,42,47,46,50,52,53,54,56.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,那種肥料的效果更好;
(2)根據(jù)兩組數(shù)據(jù)完成如圖莖葉圖,從莖葉圖看,那種肥料的效果更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E是BB1的中點(diǎn),D∈AB,∠A1DE=90°.
(1)以C為原點(diǎn)建立坐標(biāo)系求D點(diǎn)的坐標(biāo)
(2)求二面角D-A1C-A的大。
(3)求E到平面 A1CD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案